分數(shù)的基本性質(zhì)教學設計15篇(優(yōu))
作為一名優(yōu)秀的教育工作者,往往需要進行教學設計編寫工作,借助教學設計可以更大幅度地提高學生各方面的能力,從而使學生獲得良好的發(fā)展。那么寫教學設計需要注意哪些問題呢?下面是小編為大家整理的分數(shù)的基本性質(zhì)教學設計,希望能夠幫助到大家。
分數(shù)的基本性質(zhì)教學設計1
教學內(nèi)容:人教版小學數(shù)學第十冊第107頁至108頁。
教學目標:
1、知識目標:通過教學使學生理解和掌握分數(shù)的基本性質(zhì),能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。
2、能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。
3、情感目標:讓學生在學習過程中養(yǎng)成互相幫助、團結(jié)協(xié)作的良好品德。
教學準備:長方形紙片、彩筆、各種分數(shù)卡片。
教學過程
一、創(chuàng)設情境,激發(fā)興趣
1.課件示故事。同學們,今天是快樂的,老師祝愿同學們節(jié)日快樂!在我們歡慶自己的節(jié)日時,花果山圣地也早已是一派節(jié)日喜慶的氣氛。
【六一節(jié)到了,猴山上張燈結(jié)彩,小猴們享受著節(jié)日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊!庇谑,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多!薄
“同學們,猴王真的分得不公平嗎?”
二、動手操作、導入新課
同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。
任選一小組的同學臺前展示實驗報告,并匯報結(jié)論。
教師根據(jù)學生匯報板書:14=28=312
2.組織討論。
。1)通過操作我們發(fā)現(xiàn)三只猴子分得的餅同樣多,表示它們分得餅的分數(shù)是相等關系。那么,這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?學生通過觀察演示得出結(jié)論教師板書:34=68=912。
3.引入新課:黑板上二組相等的分數(shù)有什么共同的特點?學生回答后板書:分數(shù)的分子和分母, 分數(shù)的大小不變。雖然他們的分子和分母變化了,但是它們的大小卻不變。那么他們的分子和分母變化有規(guī)律嗎?我們今天就來共同探討這個變化規(guī)律。
三、比較歸納,揭示規(guī)律。
請每組拿出探究報告,任意選擇黑板上的二組相等分數(shù)中的一組,共同討論、探究,并完成探究報告。
1.課件出示探究報告。
2.分組匯報,歸納性質(zhì)。
(1)從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。
。ǜ鶕(jù)學生回答板書:同時乘上 相同的數(shù))
(2)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?
。ǜ鶕(jù)學生的回答板書:除以 )
(3)有與這一組探究的.分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?
。4)綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?
根據(jù)學生的回答,揭示課題,
。ā@叫做板書:分數(shù)的基本性質(zhì))
對這句話你還有什么要補充的?(補充“零除外”)
討論:為什么性質(zhì)中要規(guī)定“零除外”?
。t筆板書:零除外)
(5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應的字下面點上著重號。
師生共同讀出黑板上板書的分數(shù)基本性質(zhì)(要求關鍵的字詞要重讀)。
3、智慧眼(下列的式子是否正確?為什么?)
。1)35=3×25=65 (生:35的分子與分母沒有同時乘以2,分數(shù)的大小改變。)
。2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)的大小也不同)
。3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數(shù)的大小不相等。)
(4)25=2×x5×x=2x5x (生:x在這里代表任何數(shù),當x=0時,分數(shù)的大小改變。)
4、示課件討論:現(xiàn)在你知道猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數(shù)表示為?如果要五塊呢?
三、回歸書本,探源獲知
1、瀏覽課本第107—108頁的內(nèi)容。
2、看了書,你又有什么收獲?還有什么疑問嗎?
3、師生答疑。
你會運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)嗎?
4、自主學習并完成例2,請二名學生說出思路。
四、多層練習,鞏固深化。
1、熱身房。35=3×()5×()=9()
824=8÷()24÷()=()3
學生口答后,要求說出是怎樣想的?
分數(shù)的基本性質(zhì)教學設計2
教學目標
1、經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2、能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
3、經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的.樂趣。
教學重點:
理解掌握分數(shù)的基本性質(zhì)。
教學難點:
歸納性質(zhì)
教學設計
。ㄒ唬﹦(chuàng)設情境,引起學生參與興趣
1、猴王變戲法(學生模仿復習)
除法式子變形
分數(shù)與除法變形
2、教師出示三只可愛的小猴圖片,獎勵聽故事:
有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成兩塊,分給第一只小猴一塊,第二只小猴見到說:“太小了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成四塊,分給第二只小猴兩塊。第三只小猴更貪,它搶著說:“我要三塊,我要三塊!庇谑牵锿跤职训谌龎K餅平均切6塊,分給第三只小猴三塊。
同學們,你知道哪只猴子分得的多嗎?(哪只猴子分得的多?讓學生發(fā)表自己的意見)
3、教師出示三塊大小一樣的餅,通過師生分餅,觀察驗收后得出結(jié)論:三只猴子分得的餅一樣多。聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道有什么規(guī)律嗎?
(二)探究新知
1、動手操作、形象感知
請同學們拿出三張相同形狀同樣大的紙,把每張紙都看作一個整體。動手折出平均分的份數(shù)2份、4份、6份,動筆把其中的1份、2份、3份畫上陰影,再把陰影部分剪下來,將剪下的陰影部分重疊,比一比記錄下結(jié)論。
分數(shù)的基本性質(zhì)教學設計3
【教學內(nèi)容】:
【教學目標】:
1、使學生理解和掌握分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2、通過猜想、驗證、歸納、總結(jié)等活動,讓學生經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結(jié)合的思考方法,感受抽象、推理的基本數(shù)學思想。
3、在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣,提高學生發(fā)現(xiàn)問題的能力。
【教學重點】:經(jīng)歷質(zhì)疑、猜想、驗證、觀察、歸納的學習過程,探究分數(shù)的基本性質(zhì)。
【教學難點】:理解和掌握分數(shù)的基本性質(zhì)。
【教學方法】:
本節(jié)課我綜合采用了談話法,情境創(chuàng)設法、引導探究法、直觀演示法,組織學生經(jīng)歷觀察,猜測,得出結(jié)論。
【學法指導】:
為了有效的達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現(xiàn)學數(shù)學就是做數(shù)學,數(shù)學教學就是數(shù)學活動的教學的理念,以學生為主體,以學生發(fā)展為本。在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經(jīng)驗。
【教學準備】:
1、媒體準備:白板
2、資源準備:PPT
【資源運用】:
1、導入——課件出示問題-——喚醒舊知
2、探究新知——PPT課件——突破重點、分解難點
3、拓展延伸
【教學過程】:
一、聯(lián)系舊知,質(zhì)疑引思。
1、在自然數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的自然數(shù)嗎?
2、在小數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的小數(shù)嗎?
3、在分數(shù)的范圍內(nèi),可以找到兩個大小相等但分子和分母又都不相同的分數(shù)嗎?
誰能說一個與《分數(shù)的基本性質(zhì)》教學設計
【喚醒學生已有知識經(jīng)驗而且引發(fā)學生的數(shù)學思考,為主動探究新知積聚動力。】
二、自主操作,驗證猜想
1、初步驗證
。1)提出問題
誰能說一個與《分數(shù)的'基本性質(zhì)》教學設計
如果讓你證明他們確實和《分數(shù)的基本性質(zhì)》教學設計
(2)匯報方法
2、深入驗證:
。1)在紙上寫上一組你認為可能相等的分數(shù);
。2)用你喜歡的方法來證明。
。3)學生操作。
。4)匯報交流。
3、概括性質(zhì),深化理解
(1)在操作的過程中,你有什么發(fā)現(xiàn)?分子分母怎樣變化分數(shù)的大小才不變?
。2)歸納概括,總結(jié)規(guī)律,揭示課題。
。3)根據(jù)我們以前學過的分數(shù)與除法的關系,以及整數(shù)除法中商不變的性質(zhì),來說明分數(shù)的基本性質(zhì)嗎?
4、運用規(guī)律,完成例2。
。1)理解題意
。2)要把他們化成分母是12而大小不變的分數(shù),分子應該怎么變化?變化的根據(jù)是什么?
。3)獨立完成,交流匯報
【給學生提供開放的探究空間,滿足學生的探索欲望!
三、知識應用,鞏固提升
1、判斷
。1)分數(shù)的分子、分母同時乘以或除以一個數(shù),分數(shù)的大小不變。
。2)兩個分數(shù)的分子、分母都不相同,這兩個分數(shù)一定不相等。
(3)《分數(shù)的基本性質(zhì)》教學設計
2、五年級有《分數(shù)的基本性質(zhì)》教學設計
3、把《分數(shù)的基本性質(zhì)》教學設計
才能使分數(shù)的大小不變?
四、回顧總結(jié),完善認知
通過本節(jié)課的學習,你有什么收獲?
【教學反思】:
1、課前準備不足,我用的20xx版做的,結(jié)果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。
2、教學機智不足,沒有關注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。
3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結(jié)束語言有歧義。
分數(shù)的基本性質(zhì)教學設計4
一、教學目標
1.經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2.能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
3.經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。
二、教學重、難點
教學重點是:分數(shù)的基本性質(zhì)。
教學難點是:對分數(shù)的基本性質(zhì)的理解。
三、教學方法
采用了動手做一做、觀察、比較、歸納和直觀演示的方法
四、教學過程
。ㄒ唬、故事引入,揭示課題
1.教師講故事。
猴山上的猴子最喜歡吃猴王做的香蕉餅了。一天,猴王做了三個大小一樣的香蕉餅給小猴們吃,它先把第一個香蕉餅切成四塊,分給猴1一塊。猴2看到后說:“太少了,我要兩塊。”猴王于是把第二個香蕉餅切成八塊,分給猴2兩塊。猴3更貪心,它趕緊說:“我要三塊,我要三塊!庇谑,猴王又把第三個香蕉餅切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?
討論:好的,這是修改后的內(nèi)容:討論哪只猴子分得的多?請同學們發(fā)表自己的觀點。老師拿出三塊大小一樣的餅干,讓學生觀察、分配,最終得出結(jié)論:三只猴子分得的餅干數(shù)量是相同的。
引導:猴王非常聰明,他想出了一個巧妙的方法來滿足小猴子們的要求,并且確保每只小猴子都能得到公平的份額。這個方法就是利用分數(shù)的基本性質(zhì)來進行分配。想要了解更多詳情嗎?學習了“分數(shù)的基本性質(zhì)”就能揭開這個謎題哦。ò鍟n題)
2.組織討論。
。1)三只猴子分得的餅同樣多,說明它們分得的餅的分數(shù)是相等關系。具體來說,如果三只猴子分得的餅的分數(shù)分別為$a$、$b$、$c$,那么有$a=b=c$。三只猴子平均分的份數(shù)和表示的份數(shù)是不變的,只是分數(shù)的分子和分母變化了。例如,如果它們分得的餅是...,那么這三個分數(shù)雖然看起來不同,但實際上是相等的。
。2)猴王給小猴子分了三塊大小一樣的香蕉,分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:2=4=6。
。3)我們班有40名同學,按照學習小組劃分,每組有10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?請用分數(shù)表示,并計算出:12=24=20xx。
3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:
分數(shù)的分子和分母變化了,分數(shù)的大小不變。
它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
。ǘ、比較歸納,揭示規(guī)律
1.出示思考題。
比較每組分數(shù)的分子和分母:
。1)從左往右看,是按照什么規(guī)律變化的?
。2)從右往左看,又是按照什么規(guī)律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質(zhì)。
。1)34到68,分子、分母都乘以2得到。原來是把1平均分成4份,現(xiàn)在是把分的份數(shù)和表示份數(shù)都擴大2倍。
板書:
。2)34是怎樣變化成912的呢?怎么填?學生回答后填空。
。3)引導口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。
。4)學生們對幾組分數(shù)進行了觀察,發(fā)現(xiàn)分數(shù)的分子和分母都乘以相同的數(shù)時,分數(shù)的大小不變。經(jīng)過討論后,他們得出結(jié)論:分數(shù)的分子和分母同乘一個數(shù),分數(shù)的大小不變。
(板書:都乘以
相同的數(shù))
。5)分數(shù)的分子和分母從右往左看,它們都是按照遞減的規(guī)律變化的。通過比較每組分數(shù)的分子和分母可以發(fā)現(xiàn),分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。
。ò鍟憾汲裕
。6)在乘法和除法的運算性質(zhì)中,我們知道都乘以、都除以一個非零數(shù),結(jié)果不變。如果去掉其中一個“都”字,換成“或者”,那么就不再滿足這個性質(zhì)了。在教科書中,分數(shù)的基本性質(zhì)規(guī)定了“都乘以或者都除以一個非零數(shù)”,這樣可以確保運算結(jié)果的準確性和穩(wěn)定性。同時,性質(zhì)中也強調(diào)了“零除外”,因為除數(shù)為零是不合法的操作,會導致數(shù)學運算的錯誤和混亂。因此,性質(zhì)中規(guī)定了“零除外”是為了保證數(shù)學運算的正確性和合理性。
。ò鍟毫愠猓
(7)學生們現(xiàn)在我們一起來學習關于分數(shù)的基本性質(zhì)。讓我們找出這些性質(zhì)中關鍵的詞語,比如“都”、“相同的數(shù)”、“零除外”等。然后我們重點讀一下這些關鍵詞。接下來讓我們一起讀一讀黑板上寫的分數(shù)基本性質(zhì)。
3.出示例2:把12和1024化成分母是12而大小不變的分數(shù)。
思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?
4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
5.質(zhì)疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
(三)、溝通說明,揭示聯(lián)系
通過舉例,分數(shù)的基本性質(zhì)與商不變性質(zhì)之間存在著密切的聯(lián)系。分數(shù)的基本性質(zhì)包括分子、分母的乘除運算、分數(shù)的加減運算等,這些性質(zhì)在運算過程中保持不變。而商不變性質(zhì)是指在整數(shù)除法中,被除數(shù)與商的乘積等于除數(shù)。通過分數(shù)與除數(shù)的關系,我們可以利用整數(shù)除法中商不變的性質(zhì)來解釋分數(shù)的基本性質(zhì)。因此,理解商不變性質(zhì)有助于深入理解分數(shù)的基本性質(zhì)。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
。ㄋ模、多層練習,鞏固深化
1.口答。(學生口答后,要求說出是怎樣想的'?)
2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質(zhì)中哪幾個字不相符。)
教學反思:
學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。因此數(shù)學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調(diào)動學生的學習積極性,向?qū)W生提供充分從事數(shù)學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數(shù)學知識和技能,充分發(fā)揮學生的能動性和創(chuàng)造性。一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結(jié),完全是為學生自主探究、合作交流的學習而設計的。具體表現(xiàn)在:
1、學生在故事情境中大膽猜想。
在一個熱帶島嶼上,有四只猴子發(fā)現(xiàn)了一堆香蕉。它們決定公平地分配這堆香蕉,但卻遇到了難題。最大的猴子自稱為“猴王”,要求先拿走一部分香蕉。其他三只猴子不甘心,于是提出了一個辦法:每只猴子輪流從香蕉堆中拿走一部分,直到香蕉被拿完為止。猴王同意了這個提議,于是開始了“猴王分餅”的游戲。第一只猴子拿走了1/4的香蕉,第二只猴子拿走了1/5的香蕉,第三只猴子拿走了1/3的香蕉。最后一只猴王拿走了剩下的30根香蕉。請問,最初這堆香蕉一共有多少根?
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內(nèi)容,并對學生的猜想提出質(zhì)疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結(jié)論的正確性,突現(xiàn)出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調(diào)學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。
3、讓學生在分層練習中鞏固深化。
在設計練習時,要緊扣重點,設計新穎多樣的題目,設置不同難度層次,讓學生在練習中逐步提高。首先是基礎練習,幫助學生理解概念,檢查他們對新知識的掌握情況;其次是鞏固練習,加深對知識的理解;最后是通過游戲激發(fā)學生的學習興趣,加深對知識的理解,活躍課堂氣氛。這樣設計不僅考慮到了學生認知發(fā)展的特點,也拓展了他們的思維空間,真正做到了理論聯(lián)系實際。
在教學過程中,我們應該注重引導學生思考,讓他們通過多種方法去驗證結(jié)論的正確性。我們不能局限于老師提供的幾種方法,而應該放手讓學生自由探索。數(shù)學教學的目的不是僅僅傳授答案,而是培養(yǎng)學生的思維能力。因此,我們應該鼓勵學生嘗試不同的途徑,去驗證和證明數(shù)學結(jié)論,從而激發(fā)他們的數(shù)學思維,培養(yǎng)他們的解決問題的能力。
分數(shù)的基本性質(zhì)教學設計5
一、教學目標:
1、讓學生經(jīng)歷分數(shù)基本性質(zhì)的探究過程,理解和掌握分數(shù)的基本性質(zhì),初步建立數(shù)學模型。
2、利用分數(shù)的基本性質(zhì)把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。
3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數(shù)學學習興趣。
二、教學重點:
理解掌握分數(shù)的基本性質(zhì),它是約分,通分的依據(jù)
三、教學難點:
理解和掌握分數(shù)的基本性質(zhì),初步建立數(shù)學模型。
四、教學準備:
課件、正方形的紙。
五、教學設計過程:
。ㄒ唬┻w移舊知.提出猜想
1、回憶舊知
猜信封:老師手上的信封里有一個數(shù)、一道算式,我抽出其中一張 ,誰能猜出另一張是什么?出示: 2÷3
你為什么這樣猜呢?引導學生回憶分數(shù)與除法的關系。媒體演示:分數(shù)與除法的關系:
被除數(shù)÷除數(shù)=
誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質(zhì)?媒體出示:商不變的性質(zhì):
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。
2、提出猜想:
既然分數(shù)與除法的關系這么緊密.除法有商不變性質(zhì),那分數(shù)是否也會有這樣的性質(zhì),請大家大膽猜想一下。(學生可能根據(jù)商不變性質(zhì)推導出分數(shù)的基本性質(zhì),學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。)
。ǘ炞C猜想,建構(gòu)新知
A、 看圖分類
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數(shù),并把相同的分數(shù)分在一起。
B、 討論方法
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
C、研究規(guī)律
師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的`秘密呢?
利用研究卡進行研究。
確定的研究對象
分子和分母同時乘上或者
除以一個相同的數(shù)
得到的分數(shù)
研究對象與得到的分數(shù)相等嗎?
相等( )不相等( )
猜想是否成立?
成立( )不成立( )
充分利用學生的生成資源:揭示課題:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。(板書)
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
練習:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數(shù)的大小不變)
師:分子與分母是怎樣變化的?(同時乘或除以相同的數(shù),0除外)
師:分數(shù)的基本性質(zhì)與商不變性質(zhì)有什么聯(lián)系?
D、質(zhì)疑完善
3/4 = 3×( )/ 4×( )
師:括號中可以填哪些數(shù)?
預設:可以填無數(shù)個數(shù)
師:如果只用一個數(shù)來表示,填什么數(shù)好?
預設:字母
師:這個字母有什么特殊要求嗎?(0除外)
得到一個初級的數(shù)學模型。3/4= 3×X/ 4×X(X≠0)
讓學生打開課本進行閱讀、內(nèi)化,并想一想還有什么問題嗎?
(三) 練習升華
1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3
2、把5/6和1/4都化為分母為12而大小不變的分數(shù)。
3、把2/3和3/4都化為分子為6而大小不變的分數(shù)。
4、把2/5的分子加上2以后,要使分數(shù)的大小不變,分母應加上多少?
5、 和 哪一個分數(shù)大,你能講出判斷的依據(jù)嗎?
(四)總結(jié)延伸
師:這節(jié)課學了什么?
師:如果一個分數(shù)為A/B,你能用一個式子來表示分數(shù)的基本性質(zhì)嗎?
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板書)
六、作業(yè)p87-1、2
板書設計
分數(shù)基本性質(zhì)
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)
6÷8
3÷4
12÷16
分數(shù)的基本性質(zhì)教學設計6
教學目標
1、經(jīng)歷探索相等分數(shù)的分子、分母變化規(guī)律的過程,使學生理解分數(shù)的基本性質(zhì)。
2、能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母而大小不變的分數(shù)。
3、培養(yǎng)學生觀察、分析和抽象概括的能力。
教學重點
理解分數(shù)的基本性質(zhì)
教學難點
發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),并能應用它解決相關的問題。
教學過程
一、復習導入
1、說說下面各分數(shù)的含義、分數(shù)單位及它有幾個這樣的分數(shù)單位。
2、口算
120÷30= 40÷5=
12÷3= 400÷50=
師:觀察兩組算式,說說你發(fā)現(xiàn)了什么?是我們已經(jīng)學過的除法的什么性質(zhì)呢?
在除法運算中,被除數(shù)和除數(shù)同時乘或除以同一個非零數(shù)時,商不會改變,這就是除法的商不變性質(zhì)。
師:除法和分數(shù)有什么關系呢?
板書課題:分數(shù)的.基本性質(zhì)
二、新授
師:阿凡提同學都熟悉吧?今天老師帶來一個有關阿凡提的數(shù)學小故事,跟同學分享一下:
有一個農(nóng)夫爺爺,他有三頭同樣健壯的牛,要分給他的三個兒子。老大分到第一頭牛的一半,老二分到第二頭牛的四分之二,老三分到第三頭牛的八分之四。老二聽了,覺得自己很吃虧,于是三兄弟大吵起來。正巧經(jīng)過的智者阿凡提問清爭吵原因后,他想了想,然后跟他們說了幾句話。三兄弟聽后恍然大悟,停止了爭吵。
同學們,你們知道阿凡提跟三兄弟講了什么嗎?
生自由發(fā)揮。
師:這里有三張同樣大小的正方形紙,分別代表著地主爺爺家的三塊地。我們一起來看看三兄弟分到的地。你能用分數(shù)來表示嗎?(出示三張紙)
師:通過觀察,可知,三兄弟分到的地同樣多。那這三個分數(shù)是什么關系呢?
生:相等
師:請觀察這三個分數(shù)的分子和分母,它們之間存在一種規(guī)律。經(jīng)過仔細觀察可以發(fā)現(xiàn),這三個分數(shù)的分子和分母在每個分數(shù)中都是互換位置的。也就是說,第一個分數(shù)的分子和分母交換位置后得到第二個分數(shù),第二個分數(shù)的分子和分母再次交換位置后得到第三個分數(shù)。這種規(guī)律使得這三個分數(shù)的大小相等,但分子和分母各不相同。
。A設)生1:分子、分母同時擴大2倍。
生2:分子、分母同時擴大4倍。
師:那從右往左看呢?
總結(jié)規(guī)律:分數(shù)的基本性質(zhì)是指分數(shù)中的分子和分母同時乘或除以相同的數(shù)(除數(shù)不能為0),分數(shù)的大小不變。這一性質(zhì)可以幫助我們簡化分數(shù),使得計算更加方便和簡便。
師:和除法商不變的性質(zhì)對比觀察,你有什么發(fā)現(xiàn)?
三、分數(shù)基本性質(zhì)的運用
把和化成分母是12而大小不變的分數(shù)。
四、鞏固練習
五、課堂總結(jié)
分數(shù)的基本性質(zhì)教學設計7
一、故事引人,揭示課題。
1.教師講故事。猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。同學們,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結(jié)論:三只猴子分得的餅一樣多。
引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質(zhì)”就清楚了。(板書課題)
[一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]
2.組織討論。
。1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關系,1/4=2/8=3/12,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:3/4=6/8=9/12。
。3)我們班有50名同學,分成了五組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導學生用不同的分數(shù)表示,然后得出:1/2=2/4=20/40。
3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:
分數(shù)的分子和分母變化了, 分數(shù)的大小不變。
它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
3.出示例2:把1/2和10/24化成分母是12而大小不變的分數(shù)。
思考:要把1/2和10/24化成分母是12而大小不變的分數(shù),分子怎么不變?變化的依據(jù)是什么?
4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
[得出性質(zhì)后,再讓學生說出猴王的想法,并回答如果小猴子要四塊,猴王怎么辦?既前后照應,又讓學生在輕松愉快的幫猴王想辦法的過程中,運用新知解決實際問題。]
5.質(zhì)疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
通過舉例,溝通分數(shù)的基本性質(zhì)與商不變性質(zhì)之間的聯(lián)系。引導學生運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12
[有助于學生順利地運用分數(shù)與除法的關系,以及整數(shù)除法中商不變性質(zhì)說明分數(shù)的基本性質(zhì),實現(xiàn)新知化歸舊知。]它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
二、比較歸納,揭示規(guī)律。
1.出示思考題。
2.比較每組分數(shù)的分子和分母:
(1)從左往右看,是按照什么規(guī)律變化的?
(2)從右往左看,又是按照什么規(guī)律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質(zhì)。(1)從左往右看,由3/4到6/8,分子、分母是怎么變化的?引導學生回答出:把3/4的分子、分母都乘以2,就得到6/8。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到6/8。
板書:
(2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。
。3)引導口述:3/4的分子、分母都乘以2,得到6/8,分數(shù)的大小不變。
(4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的'大小不變。
。ò鍟憾汲艘 相同的數(shù))
(5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。
。ò鍟憾汲 )
。6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質(zhì),讓學生說出少了什么?(少了“零除外”)討論:為什么性質(zhì)中要規(guī)定“零除外”?
。ò鍟毫愠猓
。7)齊讀分數(shù)的基本性質(zhì)。先讓學生找出性質(zhì)中關鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質(zhì)。
[新知識力求讓學生主動探索,逐步獲取。“猴王分餅”和分析班級學生人數(shù)得出的三組相等的分數(shù)為學生探索新知提供材料,出示的思考題是學生探求新知、獨立思考的指南,教師環(huán)緊扣的提問以及引導學生逐步展開的充分的討論,幫助學生一步步走向結(jié)論。]
分數(shù)的基本性質(zhì)教學設計8
教學目標:
知識與技能:理解和掌握分數(shù)的基本性質(zhì),知道分數(shù)基本性質(zhì)與整數(shù)除法中商不變性質(zhì)的關系。能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母相同而大小不變的分數(shù);培養(yǎng)學生觀察比較、抽象概括及動手實踐的能力,進一步發(fā)展學生的思維。
過程與方法:經(jīng)歷探究分數(shù)基本性質(zhì)的過程,感受“變與不變”,“轉(zhuǎn)化”等數(shù)學思想方法。情感態(tài)度與價值觀:激發(fā)學生積極主動的情感狀態(tài),養(yǎng)成注意傾聽的習慣,體驗互助合作的樂趣。
教學重點:理解和掌握分數(shù)的基本性質(zhì),會運用分數(shù)的基本性質(zhì)。
教學難點:自主探究出分數(shù)的基本性質(zhì)
教學準備:PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。
教學流程:
一、故事導入激趣引思
引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。
講故事:話說唐僧師徒四人去西天取經(jīng),一路上歷經(jīng)磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的對嗎,師父真的偏心嗎?
生發(fā)表見解。
二、自主合作探索規(guī)律
1、反饋引導:1/2=2/4=4/8。“三個徒弟分得的餅一樣多---等式---仔細瞧瞧這組分數(shù)等式的分子分母相同么?但是它們的大小卻?再用變化的眼光瞧瞧,(師畫正反向兩箭頭)我們發(fā)現(xiàn)分數(shù)的分子分母改變了,什么卻沒有變?師貼板帖分數(shù)可真與眾不同呵!
2、提出探究任務:那如果我讓們動手做或者聯(lián)系生活實際想,像這樣大小相等的分數(shù),只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:
。1)每個小組找出一組大小相等的分數(shù),并想辦法證明這組分數(shù)大小相等。
。2)思考:在寫分數(shù)的.過程中你們發(fā)現(xiàn)了什么規(guī)律?
組內(nèi)商量一下然后開始行動!
3、小組研究教師巡視
4、全班匯報
交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯(lián)系一組人數(shù)說發(fā)現(xiàn)規(guī)律把每組數(shù)從左往右或者從右向左仔細觀察你能發(fā)現(xiàn)分子分母的怎樣的變化規(guī)律?(可以舉例說演繹推理深入)隨機更換貼圖
板書課題:分數(shù)的基本性質(zhì)打出幻燈
5、反思規(guī)律看書對照找出關鍵詞要求重讀共同讀
6、引證規(guī)律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數(shù)的正確性并由此發(fā)現(xiàn)了分數(shù)的基本性質(zhì)那你能否利用分數(shù)與除法的關系以及整數(shù)除法中商不變性質(zhì),再一次說明分數(shù)的基本性質(zhì)。
三、自學例題運用規(guī)律
過渡:同學們剛剛的精彩表現(xiàn)展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”。現(xiàn)在開始
生自學
集體評議:例2練一練1和2,請說說你的根據(jù)和想法!重點讓學生說說根據(jù)什么,分母、分子是如何變化的。
四、多層練習鞏固深化
1、判斷對錯并說明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數(shù)
思考:分數(shù)的分母相同,能有什么作用?
3、圈分數(shù)游戲圈出與1/2相等的分數(shù)
4、對對碰與1/2,2/3,3/4生生組組師生互動
五、課堂小結(jié)課堂作業(yè)
結(jié)語:你看,運用數(shù)學知識玩游戲,也是樂趣無窮。這節(jié)課我們就上到這兒,
作業(yè):余下來的時間請完成課本97頁練習十八的1-3題,做在書上。
分數(shù)的基本性質(zhì)教學設計9
教學目標:
情感態(tài)度:培養(yǎng)學生觀察、比較、抽象、概括的邏輯思維能力,并且滲透事物間相互聯(lián)系,發(fā)展變化的辯證唯物主義觀點。
知識技能:理解分數(shù)的基本性質(zhì),并且能夠靈活應用。
過程方法:動手操作、觀察、討論
教學重、難點:理解并掌握分數(shù)的基本性質(zhì)并靈活應用。
教具準備:自制多媒體課件、圖(2組)、拼圖畫一幅、實物投影儀。
學具準備:拼圖12組。
教學設計理念:
《新課標》要求,讓學生在動手操作中觀察、思考,在生動具體的情境中學習數(shù)學,參與知識的發(fā)現(xiàn)過程。在教學分數(shù)的基本性質(zhì)時,選擇了學生喜聞樂見的游戲形式,在學生人人參與的教學情境中,讓學生發(fā)現(xiàn)問題——討論問題——解決問題。力求通過學生動手實踐,自主探索和合作交流的學習方式,新知識的教學,訓練學生思維,引導學生把所學數(shù)學知識應用于實際中。感受數(shù)學的價值,本課設計完全從學生發(fā)展為本,在教學中大膽的把課堂還給學生,讓學生成為課堂真正的主人。
教學過程:
一、 創(chuàng)設情境,激趣導入。
設計意圖:讓學生在喜聞樂見的游戲情境中,以濃厚的興趣參與學習,激發(fā)學生探索數(shù)學問題欲望,并訓練學生小組合作學習的方法和習慣。
師:請看這幅拼圖漂亮嗎?老師這還有三幅漂亮的圖片(投影展示)可愛的青蛙,朝氣彭勃的太陽,誘人的蘋果,用你們靈巧的雙手能不能把他們拼出來?請小組合作完成。同學們,準備好了嗎?我宣布:拼圖比賽現(xiàn)在開始。
請看拼圖要求:1、用所給材料拼成三個完全一樣圖形。
2、用分數(shù)表示陰影部分占整幅圖的幾分之幾,并寫出來。
二、合作交流,探究規(guī)律。
設計意圖:讓學生在具體的情境中充分利用現(xiàn)有資源,增強學生的學習興趣,既有張揚個性的獨立思考,又有發(fā)揮集體力量的小組合作學習,培養(yǎng)學生敢于探索的精神與大膽嘗試的能力,同時讓學生選擇自己喜歡的方式,既尊重了學生,又激發(fā)了學生的學習興趣,體現(xiàn)了主體性。
。ㄒ唬┢磮D,寫分數(shù)。
(1)教師組織小組活動,并巡視,參與,指導小組活動。學生拼好圖后寫出分數(shù)。
(2)匯報優(yōu)勝組介紹經(jīng)驗,并展示作品。(體會小組合作的有效性)教師貼圖并板書分數(shù)。( = = )
(二)找分數(shù)間的大小關系。
。1)師:請同學們用自己喜歡的方法找一找每組中三個分數(shù)的大小關系,學生獨立思考后與同桌交流方法。
。2)匯報:每組中三個分數(shù)大小相等。
比較方法。(1)看圖比較(2)化小數(shù)比較(3)利用商不變的性質(zhì)比較(4)……
(三)探究規(guī)律
。1)每組中三個分數(shù)看似不同,實質(zhì)大小相等,它們之間到底有什么聯(lián)系?小組討論探究規(guī)律。
。2)交流自己的發(fā)現(xiàn)。①每組中三個分數(shù)平均分的份數(shù)不同取的分數(shù)也不同?②分子,分母都擴大了2倍(3倍)③……
。3)師:分數(shù)的分子和分母怎樣變化時,分數(shù)的大小才會不變,學生自由發(fā)言,教師給予肯定和鼓勵。
。4)師結(jié)合圖依據(jù)分數(shù)的意義講解變化規(guī)律。
。5)小結(jié)分數(shù)的基本性質(zhì):強調(diào)“相同”“同時”組織討論:“相同的數(shù)”可以是哪些數(shù)?
。ㄋ模⿲Ρ确謹(shù)的基本性質(zhì)和商不變的'性質(zhì)。
學生對比,說出兩個性質(zhì)間的區(qū)別與聯(lián)系。
三、應用。
設計意圖:本環(huán)節(jié)所設計是由易到難,緊扣本課的重難點,練習具有針對性、實用性、開放性。通過變式練習讓學生的思維得到訓練,激發(fā)探究熱情,培養(yǎng)創(chuàng)新能力。
1、填空
。1)學生獨立思考。(2)交流口答,并說明依據(jù),同時訓練學生應用所學知識解決實際問題的能力。
2、比較 和 的大小。
四、游戲"找朋友”。
設計意圖:游戲的情境,形式活潑,讓學生通過大小相等的分數(shù)找到自己的朋友。游戲規(guī)則新穎而恰當,既鞏固新知又體會到數(shù)學與生活的密切聯(lián)系。
同學們拿出課前老師發(fā)給你的紙,紙上所寫分數(shù)大小相等的同學,你們是“好朋友”。請學生讀自己的分數(shù),與他所讀分數(shù)大小相等的同學舉起來確定后手拉手離場。
,五年級數(shù)學分數(shù)的基本性質(zhì)教學設計
分數(shù)的基本性質(zhì)教學設計10
教學目標
1. 讓學生通過經(jīng)歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2. 根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
3. 培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質(zhì)疑、學會分析的能力。
教學重點使學生理解分數(shù)的基本性質(zhì)。
教學難點讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關的問題。
教學過程
一、故事情景引入
同學們,每年的中秋節(jié)你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統(tǒng)風俗。去年的中秋節(jié),易老師的鄰居李奶奶家里,發(fā)生了一件有趣的事情,大家想不想知道?
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多!
生乙:“我覺得小明分得多!
生丙:“我覺得公平,他們?nèi)齻分得一樣多!
師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了!
二、新授
師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大!
1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了!
首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)
2. 師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)
下面請哪位同學說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的`一份,就是它的三分之一。”
生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二!
師:“那九分之三又是怎么得到的呢?大家一起說!
生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”
。▽W生說的同時,教師操作,分完后把圓片貼在黑板上。)
3. 師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”
小結(jié):原來三個圓的陰影部分是同樣大的。
師:“ 現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)
生:“奶奶分月餅是公平的,因為他們?nèi)齻分得的月餅一樣多!
師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的。”
生乙:“這三個分數(shù)是相等的!
師:“剛才的試驗證明,它們的大小是相等的!保ò鍟,打上等號)
4. 研究分數(shù)的基本規(guī)律。
師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”
生甲:“三個分數(shù)的分子分母都變了,大小沒變!
師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍!
師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)
教師小結(jié):“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結(jié)一下,好嗎?”
學生發(fā)言
小結(jié):像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數(shù)的基本性質(zhì)。
5. 深入理解分數(shù)的基本性質(zhì)。
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說。”(學生討論后發(fā)言)
師:剛才同學們都用自己的語言說了分數(shù)的基本性質(zhì),我們的書上也總結(jié)了分數(shù)的基本性質(zhì),現(xiàn)在請打開書看到108頁?纯磿鲜窃趺凑f的,是你說得好,還是書上說得好,為什么?
齊讀分數(shù)的基本性質(zhì),并用波浪線表出關鍵的詞。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學生結(jié)合以前學過的商不變的性質(zhì)討論,為什么加“零除外”。
教師小結(jié):“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外!保ㄟ呏v邊板書。)
三、應用
1.學了分數(shù)的基本性質(zhì)到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術。
2.學生練習課本例題2,兩名學生在黑板上做。
3.學生自己小結(jié)方法。
4.按規(guī)律寫出一組相等的分數(shù)。
分數(shù)的基本性質(zhì)教學設計11
一、學習目標:
1、學生能理解和掌握分數(shù)的基本性質(zhì),知道分數(shù)的基本性質(zhì)與整數(shù)除法中商不變的規(guī)律之間的聯(lián)系。
2、學生能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同而大小相等的分數(shù)。
3、培養(yǎng)學生觀察、比較、抽象、概括的邏輯思維能力,滲透“事物之間是相互聯(lián)系的”辨證唯物主義觀點。
二、重、難點:
理解和掌握分數(shù)的基本性質(zhì)。
三、學習過程:
一、導入
。1)3張同樣的正方形或長方形紙片,(如下圖)平均分成2份、4份、8份,涂上顏色,分別用分數(shù)表示涂色部分。
。2)你發(fā)現(xiàn)了什么?
二、學習新知
1、師板書 = =
2、觀察三組分數(shù),它們的分子和分母是怎樣變化的?
分小組討論,并填寫
1 ( ) 2 1 ( ) 4
2 ( ) 4 2 ( ) 8
4 ( ) 2 2 ( ) 1
8 ( ) 4 4 ( ) 2
總結(jié):分數(shù)的分子和分母同時 或 相同的數(shù),分數(shù)的大小
3、應用
根據(jù)分數(shù)的基本性質(zhì),我們可以寫出很多相等的分數(shù)
、诺姆肿雍头帜竿瑫r乘2,等于( );同時乘4,等于( );
同時乘5,等于( );同時乘7,等于( )
總結(jié): =( )=( )=( )= ( )
、= 說出你這樣填的理由
= 說出你的理由
4、鞏固練習
、诺80頁 (直接做在課本上)
、疲谙旅娴睦ㄌ柪锾钌线m當?shù)臄?shù)。
在下面的()里填上適當?shù)臄?shù),在○里填上“×”號或“÷”,使等式成立
⑶
請你當法官(說明理由)
、认旅娴姆謹(shù)化成分母是12,而大小不變的分數(shù)
、上旅娴姆謹(shù)化成分子是6,而大小不變的分數(shù)
5、拓展練習
判斷
1、分數(shù)的.分子和分母同時加上或者減去相同的數(shù),分數(shù)的大小不變。( )
2、把 的分子增加1,分母增加3,分數(shù)的大小不變。( )
3、把 的分子擴大2倍,分母縮小2倍,分數(shù)的大小不變。( )
思考:一個分數(shù)的分母不變,分子乘以3,這個分數(shù)的大小有什么變化嗎?如果分子不變,分母除以5呢?
分數(shù)的基本性質(zhì)教學設計12
一、教學內(nèi)容
分數(shù)的基本性質(zhì)。(課本第75―76頁的例1、例2及“做一做”、第77頁練習十四的第1―3題)
二、教材簡析
《分數(shù)的基本性質(zhì)》是小學數(shù)學教材中重要的一部分,它對于學生理解分數(shù)的概念和運算規(guī)律具有重要意義。分數(shù)的基本性質(zhì)包括分數(shù)的分子和分母的關系,以及分數(shù)的大小比較等內(nèi)容。通過學習分數(shù)的基本性質(zhì),可以幫助學生建立起對分數(shù)運算的基本認識,為后續(xù)學習打下堅實的基礎。分數(shù)的基本性質(zhì)是數(shù)學中的重要規(guī)律,通過觀察和實踐,學生可以逐漸理解分數(shù)的特點和規(guī)律,從而更好地掌握分數(shù)的運算方法。
三、教材處理
以前,隨著教育教學理念的不斷更新,教師們開始重新審視《分數(shù)的基本性質(zhì)》這一內(nèi)容的教學方法。傳統(tǒng)上,教師通常將其視為一種靜態(tài)的知識,通過幾個例子讓學生快速總結(jié)規(guī)律,然后通過練習加深理解。然而,隨著課程改革的深入,教師們開始更加注重學生獲取知識的過程。但現(xiàn)在的問題是,有些教學過于碎片化,步驟較小,缺乏足夠的引導和探究過程。因此,對于《分數(shù)的基本性質(zhì)》的教學,是否可以有更多的新思路呢?根據(jù)新的課程標準,教師應該給予學生更多的機會進行數(shù)學活動,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識、思想和方法。
根據(jù)這一新的理念,我認為教師可以通過設計具有挑戰(zhàn)性的探索活動,讓學生在探索的過程中自主發(fā)現(xiàn)分數(shù)的基本性質(zhì)。通過這種動態(tài)的學習過程,學生可以體驗到發(fā)現(xiàn)真理的樂趣,感受到數(shù)學思維的魅力,培養(yǎng)科學學習的方法。因此,教師在教學中的`重點不僅僅是傳授規(guī)律和應用,更要注重培養(yǎng)學生的思維和方法。
根據(jù)以上思考,我將教學重點放在讓學生探究發(fā)現(xiàn)分數(shù)的基本性質(zhì)上,設計了一種“猜想―驗證―反思”的教學模式。在整個課程中,我通過引導學生進行遷移舊知、大膽猜想、實驗操作、驗證猜想、質(zhì)疑討論和完善猜想等一系列探究過程,突出了過程性目標。這種教學模式旨在激發(fā)學生的探究興趣,培養(yǎng)他們的邏輯思維能力和解決問題的能力。
四、設計意圖:
這節(jié)課主要是根據(jù)小學數(shù)學課程標準設計的,旨在通過創(chuàng)設問題情境、提出問題、解決問題、建立數(shù)學模型、解釋數(shù)學模型以及運用數(shù)學模型等環(huán)節(jié),幫助學生更好地理解和掌握數(shù)學知識。
1、通過故事創(chuàng)設問題情境,貼近學生生活,有利于激發(fā)學生學習興趣。
2、從故事情境中提出問題,體現(xiàn)數(shù)學來源于生活。
3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產(chǎn)生的過程。
4、從幾組分數(shù)中分析,找到分數(shù)的基本性質(zhì),從而初步建立數(shù)學模型。
5、設計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。
6、在游戲活動中對數(shù)學知識進行拓展運用。
五、教學目標
1、知識與技能
(1)經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
。2)能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
2、情感態(tài)度與價值觀
。1)經(jīng)歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。
(2)體驗數(shù)學與日常生活密切相關。
3、過程與方法
。1)在參與觀察、操作和討論等學習活動的過程中,我們通過探索和實踐來加深對知識的理解。在這個過程中,我們不僅能夠獲得直觀的認識和經(jīng)驗,還能夠培養(yǎng)邏輯思維和解決問題的能力。通過這樣的學習方式,我們能夠更好地理解分數(shù)的基本性質(zhì),并能夠?qū)ζ溥M行簡要而合理的說明。
(2)培養(yǎng)學生的觀察、比較、歸納、總結(jié)概括能力。
。3)能根據(jù)解決問題的需要,收集有用的 信息 進行歸納,發(fā)展學生的歸納、推理能力。
六、教學重點
理解分數(shù)的基本性質(zhì)
七、教學難點
能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)
八、教學準備
教師:電腦課件
學生:圓紙片長方形紙
九、教學過程:
(一)回顧復習,舊知鋪墊。
課件出示復習題
1、商不變的性質(zhì)
12÷3=()
。12×10)÷(3×10)=()
(12÷3)÷(3÷3)=()
利用什么知識填空的?
2、除法與分數(shù)的關系
30÷120=()/()
。ǎ拢ǎ=17/51
利用什么知識填空的?
。ǘ┕适乱耍沂菊n題。
課件出示故事(動畫):從前有座山,山上有座廟,廟里有個老和尚和一個小和尚,哦不對,是三個小和尚。小和尚最喜歡吃老和尚做的餅啦。有一天,老和尚做三塊大小一樣的餅,想給小和尚吃,還沒給,小和尚就叫開了,“我要一塊”,“我要兩塊”,“嘻嘻,我不要多,只要四塊!崩虾蜕卸挍]說,把第一塊餅平均分成4塊,取出其中1塊給第一個和尚;把第二塊餅平均分成8塊,取其中2塊給高和尚。把第三塊餅平均分成16塊,取其中的4塊給了胖和尚。小朋友,你知道哪個和尚分得多嗎?
生1:胖和尚吃的多。
生2:矮和尚吃的多。……
師:到底誰回答得對呢?我們一起動手分餅來求證吧
1、合作探究
師:請同學們組成小組,每組拿出三個大小相等的圓,用陰影部分或涂色表示每個和尚分得的餅,展示出平均分配的情況。學生小組合作,共同展示出分配公平的結(jié)果。
師:比較一下陰影部分的大小,結(jié)果怎樣?
生:陰影部分的大小相等。
師:陰影部分相等說明每個和尚分的餅相等。
師:請同學們用分數(shù)表示陰影部分。
師:陰影部分相等說明這三個分數(shù)怎樣?
生:三個分數(shù)相等。(隨著學生的回答,老師將板書的三個分數(shù)用“=”連接。)
2、組織討論。
師:仔細觀察這三個分數(shù)什么變了,什么沒有變?
讓學生小組討論后答出:它們分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
師:它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
3、比較歸納
同學們:從左到右觀察,這三個分數(shù)的分子和分母都是按照相同的比例變化的,保證了分數(shù)的大小不變。
經(jīng)過幾名學生的集體討論后,他們發(fā)現(xiàn)一個有趣的規(guī)律:當一個分數(shù)的分子和分母同時乘以相同的數(shù)時,這個分數(shù)的大小保持不變。接下來我們一起來探索這個規(guī)律的原因。
師:從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。(邊講邊板書)
4、揭示規(guī)律
教師小結(jié):大家剛才都認真觀察了,發(fā)現(xiàn)分數(shù)的分子和分母之間有著一種規(guī)律性的變化,而分數(shù)的大小卻保持不變。這正是我們今天要學習的新知識。(板書課題:分數(shù)的基本性質(zhì))
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,能把它歸納成一句話嗎?(小組討論發(fā)言)
師:很好,讓我們來總結(jié)一下分數(shù)的基本性質(zhì)。在我們的教科書中,分數(shù)的基本性質(zhì)包括:分數(shù)的大小比較、分數(shù)的加減乘除、分數(shù)的化簡、分數(shù)的約分等。與同學們總結(jié)的不同之處在于書中強調(diào)了分數(shù)的化簡和約分這兩個概念。這些性質(zhì)都是非常重要的,能夠幫助我們更好地理解和運用分數(shù)。讓我們繼續(xù)學習,掌握這些知識吧。
全班討論:為什么要規(guī)定0除外”?
引導:在一個寺廟里,有一個聰明的老和尚和一個小和尚。一天,小和尚拿著一塊大餅去找老和尚,請求老和尚幫忙將這塊大餅平分成兩份。老和尚想了一會兒,然后將大餅切成了兩塊形狀完全相同的小塊,然后說:“這樣一份給你,另一份給我!毙『蜕懈吲d地接受了。老和尚這樣做是因為他知道:只要兩份的形狀大小完全相同,那么無論怎么分,兩份總是公平的。
。ㄈ┦崂頊贤,靈活運用。
1、分數(shù)的基本性質(zhì)與商不變的性質(zhì)的聯(lián)系。
想一想,根據(jù)分數(shù)與除法的關系,以及整數(shù)除法中商不變的規(guī)律,你能說明分數(shù)的基本性質(zhì)嗎?
啟發(fā)學生說出它們之間的聯(lián)系:
。1)分子相當于被除數(shù),分母相當于除數(shù);
。2)被除數(shù)和除數(shù)同時乘以或除以相同的數(shù)就相當于分子和分母同時乘以或除以相同的數(shù);
。3)“相同的數(shù)”中要求“0除外”;
。4)商不變相當于分數(shù)的大小不變。
2、分數(shù)基本性質(zhì)的應用
(1)出示課本第76頁例2,把2/3和10/24分別轉(zhuǎn)化成分母是12而大小不變的分數(shù)。
。2)認真審題,弄清題意。
要求學生讀題后歸納出題目的要求。
a、分母都變成12
b、分數(shù)的大小不變
。3)想一想:怎么化,根據(jù)什么?
過程要求:
a、學生獨立思考,完成題目要求;
b、全班反饋,教師課件顯示。
。ㄋ模┒鄬泳毩暎柟躺罨。
1、完成教科書第77頁練習十四的第1―3題。
。1)第1題
此題著重練習分數(shù)的相等和不等。練習時,讓學生按照題目的要求涂色。
。2)第2題
這道題目涉及分數(shù)的大小比較,需要運用分數(shù)的基本性質(zhì)進行計算。學生可以將2/5化簡為4/10,或者將4/10化簡為2/5,然后進行比較大小。
。3)第3題,說出相等的分數(shù)(對口令)
此題是運用分數(shù)基本性質(zhì)的游戲練習,游戲時,讓學生以同桌為單位,仿照第3題的樣子,一個人先說一個分數(shù),另一個人回答一個相等的分數(shù),然后交換先后順序。
2、教科書76頁“做一做”
。1)由學生獨立完成,然后同學交流。
(2)全班反饋,說一說思維過程。
。ㄎ澹┬〗Y(jié)
教師:同學們,經(jīng)過今天的學習,你有什么收獲嗎?在分數(shù)運算中,我們學到了一個重要的性質(zhì):當分子和分母同時乘以或除以相同的數(shù)時,分數(shù)的值不會改變。這個性質(zhì)在簡化分數(shù)運算時非常有用,希望大家能夠靈活運用這個知識點。
(六)動腦筋出教室游戲(機動)
請拿出手中的紙片,上面寫著不同的分數(shù)。請仔細看清自己手中紙片上的分數(shù),然后報出來。報出相同分數(shù)的同學先離場,接著是下一個相同分數(shù)的同學,最后是剩下的同學離場。請開始游戲。
十、板書設計
商不變的性質(zhì)
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。
分數(shù)與除法的關系
a÷b=a/b(b≠0)
分數(shù)的基本性質(zhì)
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)的基本性質(zhì)教學設計13
教學內(nèi)容:人教版新課標教科書小學數(shù)學第十冊75~77頁例
1、例2.教學目標:1知識與技能目標:
。1)經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
。2)能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
2、過程與方法目標:
。1)經(jīng)歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質(zhì)做出簡要的、合理的說明。(2)培養(yǎng)學生的觀察、比較、歸納、總結(jié)概括能力。
。3)能根據(jù)解決的需要,收集有用的信息進行歸納,發(fā)展學生歸納、推理能力。
3、情感態(tài)度與價值觀目標:
(1)經(jīng)歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。(2)鼓勵學生敢于發(fā)現(xiàn)問題,培養(yǎng)學生敢于解決問題的學習品質(zhì)。
教學重點:探索、發(fā)現(xiàn)和掌握分數(shù)的基本性質(zhì),并能運用分數(shù)的基本性質(zhì)解決問題。教學難點:自主探究、歸納概括分數(shù)的基本性質(zhì)。教學準備:學生準備一張正方形的紙,課件教學過程:
一、故事導入。
師:同學們,你們喜歡看《喜羊羊與灰太狼》的動畫片嗎?生:喜歡。
師:老師這里有一個慢羊羊分餅的故事,羊村的小羊最喜歡吃村長做得餅。一天,村子做了三塊大小一樣的餅分給小羊們吃,他把第一塊餅的1/2分給懶羊羊,再把二塊餅的2/4分給喜羊羊,最后把第三塊餅的4/8分給美羊羊,懶羊羊不高興地說:"村長不公平,他們的多,我的少!保◣熯呎f邊板書分數(shù))同學們,村長公平嗎?他們那個多,那個少?
生:公平,其實他們分得一樣多。
師:到底你們的猜想是否正確呢?讓我們來驗證一下!
二、探究新知,解決問題:1、小組合作,驗證猜想:(1)玩一玩,比一比.(讀要求)師:我們現(xiàn)在小組合作來玩一玩,比一比.(出示要求)
師:(讀要求)現(xiàn)在開始.(學生匯報)師:你們發(fā)現(xiàn)了什么?
生1:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數(shù)都相等。(師在分數(shù)上畫符號)
生2:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數(shù)都相等。(出示課件演示)
。病⒊醪礁爬ǚ謹(shù)的基本性質(zhì).(2)算一算,找一找.師:(提問)同學們觀察一下,這三個分母什么變了?什么沒變?生1:它們的分子和分母變化了,但分數(shù)的大小沒變。生2:它們的分子和分母變化了,但分數(shù)的大小沒變。
師:這三個分數(shù)的分子和分母都不相同,為什么分數(shù)的大小都相等呢?同學們思考一下。
生1:它們的分子和分母都乘相同的數(shù)。生2:它們的分子和分母都除以相同的數(shù)。
師:那同學們的猜想是否正確呢?它們的變化規(guī)律又是怎樣呢?我們小組合作觀察討論。并把發(fā)現(xiàn)的規(guī)律寫下來。
。ǔ鍪菊n件)
小組匯報:(歸納規(guī)律)
師:哪一組把你們討論的結(jié)果匯報一下,從左往右觀察,你們發(fā)現(xiàn)了什么?生1:從左往右觀察,我們發(fā)現(xiàn)1/2的分子和分母同時乘2,分數(shù)的大小不變。生2:從左往右觀察,我們發(fā)現(xiàn)1/2的分子和分母同時除以4,分數(shù)的大小不變。師:你們是這樣想的,既然這樣,那么分子和分母同時乘5,分數(shù)的的大小改變,嗎?生:不變。
師:同時乘
6.8呢?生:不變。
師:那你們能不能根據(jù)這個式子來總結(jié)一下規(guī)律呢?
生1:一個分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變。生2:一個分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變。師:(板書)誰來舉這樣一個例子?生:......
師:這樣的例子,我們可以舉很多,剛才我們是從左往右觀察,從右往左觀察,哪一組匯報一下。
生:從右往左觀察,我們發(fā)現(xiàn)了,4/8的分子和分母同時除以2,得到了2/4,分數(shù)2/4的分子和分母同時除以2得到分數(shù)1/2,他們的分數(shù)的大小不變。
生:從右往左觀察,我們發(fā)現(xiàn)了,4/8的分子和分母同時除以2,得到了2/4,分數(shù)2/4的分子和分母同時除以2得到分數(shù)1/2,他們的分數(shù)的大小不變。(師課件演示)
師:你們是這樣想的,既然這樣,那么分子和分母同時除以5,分數(shù)的的大小改變,嗎?生:不變。
師:同時除以
6.8呢?生:不變。
師:那你們能不能根據(jù)這個式子來總結(jié)一下規(guī)律呢?
生1:一個分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。生2:一個分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。師:(板書)誰來舉這樣一個例子?生舉例
。场娬{(diào)規(guī)律
師:我把兩句話合成了一句話,根據(jù)分數(shù)的這一變化規(guī)律,你認為下面的式子對嗎?(課件出示)
生:回答,錯的,因為分數(shù)的分子、分母沒有乘相同的數(shù)。師:(在黑板上圈出)對必須乘相同的數(shù)。
生:錯,因為分子乘2,分母沒有乘2,分子和分母沒有同時乘。師:(在黑板上圈出)對必須同時乘。
師:分數(shù)的分子、分母都乘或除以相同的數(shù),分數(shù)的大小不變,這里“相同的數(shù)”是不是任何數(shù)都可以呢?我們看一看(課件出示)師:這個式子成立嗎?
生:不成立,因為0不能做除數(shù),4乘0得0是分母,分母相當于除數(shù),所以這個式子是錯誤的。
師:我不乘0,我除以0可以么?生:不成立,因為0不能作除數(shù)。
師:同學們不錯,這兩個式子都不成立,我們剛才總結(jié)的分子、分母同時乘或除以相同的數(shù),這相同的數(shù)必須(生:0除外)(師板書)
師:這一變化規(guī)律就是我們這節(jié)課學習的內(nèi)容,分數(shù)的基本性質(zhì),(板書課題)在這一規(guī)律里,需要我們注意的是:(生:同時、相同的數(shù)、0除外)
師:我相信懶羊羊?qū)W習了分數(shù)的基本性質(zhì),那就不會生氣了它知道(出示課件)一樣多,咱們同學們千萬不要犯它同樣的錯誤了,我們把這一條規(guī)律讀兩遍,并記下它。(生讀規(guī)律)
師:學習了分數(shù)的基本性質(zhì),我想利用你們的火眼金睛,當一當小法官(出示課件)
生:(讀題,用手勢表示對、錯,并說出原因)
三、運用規(guī)律,自學例題1、學習例2師:這個分數(shù)的基本性質(zhì)特別的'有用,我們可以根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)化成和它相等的另外一個分數(shù),我們一起去看一看。(課件出示例題)學生讀題
師:分子、分母應該怎樣變化?變化的依據(jù)是什么?小組內(nèi)討論一下(學生討論)師:誰來說一說?
生:2/3的分子分母同時乘4得到8/12,變化的依據(jù)是分數(shù)的基本性質(zhì)。生:10/24的分子和分母同時除以2,得到5/12,變化的依據(jù)是分數(shù)的基本性質(zhì)。師:回答得不錯,自己獨立完成這題。
師:(巡視)請一名學生說出答案,(生說,師出示答案)
四、分數(shù)的基本性質(zhì)與商不變的性質(zhì)
師:分數(shù)的基本性質(zhì)作用可大了,那大家回想一下,這與我們以前學習的除法里面哪一個性質(zhì)相似?生:商不變的性質(zhì)。
師:除法里商不變的性質(zhì)是怎么說的?
生:被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù)(0除外),商不變。師:你們能否用商不變的性質(zhì)來說明分數(shù)的基本性質(zhì)?小組內(nèi)討論一下。
小組討論
師:哪一組把討論的結(jié)果匯報一下。
生:在分數(shù)里,被除數(shù)相當于分子,除數(shù)相當與分母,被除數(shù)與除數(shù)同時擴大或縮小相同的倍數(shù),就相當于分子、分母同時乘或除以相同的數(shù)(0除外),因此,商不變就相當于分數(shù)的大小不變。(師板書)
師:既然能用商不變的性質(zhì)來說一說分數(shù)的基本性質(zhì),那我們來小試牛刀。(出示課件)
生:5除以10等于1/2,當被除數(shù)5縮小5倍就相當于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,當除數(shù)24除以3得8就相當于分母除以3,分母除以3分子也除以3,12除以3得4.五、課堂運用。1、跨欄高手
師:同學們的回答簡直太棒了,那你們有資格讓老師把你們帶到運動場去當跨欄高手了。(出示課件)
師:(學生回答三題)同學們這么大的數(shù)一下子就得出結(jié)果,有什么秘訣嗎?生:用大數(shù)除以小數(shù),就知道分母、分子擴大了幾倍.2、拓展延伸:
師:當了跨欄高手,我們的成績非常的好,那我們就到羊村去玩吧,來到羊村,慢羊羊讓大家當村長,解決難題,你們敢接招嗎?生:敢
師:(出示課件)那我們就要小組為單位,開始玩游戲。小組匯報結(jié)果
六、撿拾碩果
看到同學們這么自信的回答,老師知道今天大家的收獲不少,說一說這節(jié)課你都收獲了哪些?生說
師:同學們,表現(xiàn)得太好了,這節(jié)課,老師從你們的身上也學到了許多,謝謝你們,下課!
分數(shù)的基本性質(zhì)教學設計14
教學內(nèi)容:人教版小學數(shù)學第十冊第75頁至78頁。
教學目標:
1、分數(shù)是數(shù)學中常見的表示形式,它由分子和分母組成,可以表示部分和整體之間的關系。學生在學習分數(shù)時,需要掌握分數(shù)的基本性質(zhì),比如分子和分母可以同時乘以一個非零數(shù),來得到一個等價的分數(shù)。這樣做不會改變分數(shù)的大小,只是改變了分數(shù)的形式。這個性質(zhì)在簡化分數(shù)、比較分數(shù)大小等問題中非常有用。
2、培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。
3、讓學生在學習過程中養(yǎng)成互相幫助、團結(jié)協(xié)作的良好品德。
教學準備:
課件、長方形紙片、彩筆。
教學過程:
一、創(chuàng)設情境,憶舊引新
悟空師徒四人來到一個小國家——算術王國,豬八戒饑腸轆轆,悟空便對他說:“我給你10塊饅頭,平均分2天吃完,怎么樣?”八戒聞言大怒:“太少了,你這猴子欺負我!”悟空瞇起眼睛說:“那我就給你100塊饅頭,平均分20天吃完,可以了吧!卑私渎牶蟠笙玻骸疤昧耍√昧!這下每天我可以多吃點了!”
同學們,你們認為八戒說得有道理嗎?(沒道理)
很久很久以前,在一個神秘的森林里,一只小松鼠和一只小松鼠精靈相遇了。小松鼠問道:“你是誰?為什么看起來和我這么像?”小松鼠精靈神秘地笑著說:“或許我們有著某種特殊的聯(lián)系,但這個謎團需要我們一起去解開……”
為什么?用你們的數(shù)學知識幫他解決一下吧。(學生立式計算)
先算出商,再觀察,你發(fā)現(xiàn)了什么?
被除數(shù)和除數(shù)同時擴大(或縮。┫嗤谋稊(shù),商不變。
同學們,再想一想除法與分數(shù)有什么關系,并完成這些練習吧。
8÷15=? 3÷20=?? 14÷27=
二、動手操作 、導入新課
同學們對知識掌握的真不錯,為了表揚你們,我決定找三個同學來與我一同分享一個兌現(xiàn)。(拿出準備好的長方形紙片。)
我們把三張紙片比喻成三塊餅,大家一起比較,每人的三塊餅大小是相同的嗎?請拿出第一塊餅,我想與你每人一塊,確保它們大小一樣,你能做到嗎?你給我的那塊餅為什么是這塊餅的一半呢?用分數(shù)怎么表示呢?
我想與你每人兩塊,而且大小要一樣大,你又能做到嗎?用分數(shù)怎樣表示呢?
當我們想要平均分配四塊給你和我時,你覺得這種分配方式可行嗎?用分數(shù)來表示這種分配又是怎樣的呢?這三個分數(shù)的大小是否相等呢?為什么呢?在本節(jié)課中,我們將一起探討這個數(shù)學問題。
這里是一個小故事:小明手里拿著三根不同長度的繩子,他想知道這三根繩子的長度是否相等。于是,他將三根繩子分別放在桌子上比較。經(jīng)過比較后,小明發(fā)現(xiàn)這三根繩子看起來似乎長度相等。這讓小明感到很驚訝,他開始思考為什么這三根繩子的長度看起來一樣。這個問題困擾著小明,他決定繼續(xù)探究原因。
三、探索分數(shù)的基本性質(zhì)
你們?nèi)谓o我的餅大小相等嗎?那么這三個分數(shù)大小怎樣?可以用怎樣的式子表示?
1、觀察一下這個式子,3個分數(shù)有什么不同?有什么地方相同?分數(shù)的大小為什么會不變呢?要弄清楚這個問題,我們必須先觀察分數(shù)的分子、分母是怎樣變化的。你們能從商不變的規(guī)律,分數(shù)與除法的關系中找出它們的變化規(guī)律嗎?
2、學生交流、討論并 匯報 ,得出初步分數(shù)的基本性質(zhì)。
分數(shù)的分子、分母同時乘以或除以相同的數(shù),分數(shù)的大小不變。
3、將結(jié)論應用到
。1)先從左往右看, 是怎樣變?yōu)榕c它相等的 的?分母乘2,分子乘2。
。2)由 到 ,分子、分母又是怎樣變化的? (把平均分的份數(shù)和取的份數(shù)都擴大了4倍。)
(3)是怎樣變化成與之相等的 的?
(4)又是怎樣變成 的?(把平均分的份數(shù)和取的份數(shù)都縮小了4倍。)
4、當兩個數(shù)相乘或相除時,其中一個數(shù)增大,另一個數(shù)減小,結(jié)果會更接近前者。不過,不能同時乘或除以0,因為0不能作為除數(shù)。
5、這就是今天我們所學的“分數(shù)的基本性質(zhì)”(板書課題,出示“分數(shù)的基本性質(zhì)”)。學生讀一遍,你認為哪幾個字特別重要?(相同的數(shù)、0除外)相同的數(shù),指一些什么數(shù)?為什么零除外?
四、知識應用(你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?)
有一位父親將一塊土地留給了他的三個兒子。大兒子認為這塊土地是他的,二兒子認為這塊土地是他的,三兒子也認為這塊土地是他的。大兒子和二兒子覺得自己吃虧了,于是他們開始爭吵。這時,阿凡提路過,詢問了爭吵的原因后,他笑了笑,給了他們一些建議,三兄弟因此停止了爭吵。
分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。
分數(shù)的分子和分母同時乘或者除以一個數(shù)(零除外),分數(shù)的大小不變。
分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。
、缎〗Y(jié)。
從判斷題中我們可以看出,分數(shù)的基本性質(zhì)要注意什么?學到這兒,大家想一想,我們以前學過的什么性質(zhì)跟分數(shù)的基本性質(zhì)類似?誰能用整數(shù)除法中商不變的性質(zhì)來說明分數(shù)的基本性質(zhì)?
學生通過觀察和比較發(fā)現(xiàn),當分子和分母同時擴大或縮小相同的倍數(shù)時,所得的分數(shù)的`大小并不會改變。這說明分數(shù)的大小取決于分子和分母的比例關系,只有在同向、同倍變化的情況下,分數(shù)的大小才能保持不變。這一規(guī)律也適用于其他分數(shù),只要分子與分母按相同的比例變化,所得的分數(shù)大小仍然保持不變。因此,我們可以得出分數(shù)的基本性質(zhì):分子與分母是同時變化的,是同向變化的,是同倍變化的。
五、鞏固練習
、笨ㄆ毩暎
⒉做P96“練一練”1、2。
、橙の队螒颍
數(shù)學王國即將舉辦一場音樂會,分數(shù)大家族的節(jié)目是女聲大合唱,演出時間緊迫,需要大家快速幫助合唱隊的成員按照要求排好隊伍。請盡快協(xié)助整理隊伍,謝謝!
要求:第一排是所有同學的分數(shù)值等于,第二排是所有同學的分數(shù)值等于,還有一位同學是指揮,他是小明。我選擇小明作為指揮是因為他在團隊合作中展現(xiàn)出了出色的領導能力和組織能力,能夠有效地協(xié)調(diào)大家的行動,確保任務順利完成。
【通過練習,分數(shù)是數(shù)學中的一個重要概念,可以表示一個整體被等分成若干份的情況。分數(shù)由分子和分母組成,分子表示被等分的部分數(shù)量,分母表示整體被等分的份數(shù)。分數(shù)可以用來表示部分與整體之間的關系,比如$frac{1}{2}$表示一個整體被等分成兩份中的一份。在分數(shù)的運算中,我們需要掌握分數(shù)的基本性質(zhì),比如分數(shù)的大小比較、分數(shù)的化簡、分數(shù)的四則運算等。對分數(shù)的基本性質(zhì)有深刻的理解可以幫助我們更好地應用分數(shù)解決實際問題。
六、課堂總結(jié)
這節(jié)課你學到了什么?什么是分數(shù)的基本性質(zhì)?你是怎樣理解的?
七、布置作業(yè)
做P97練習十八2。
分數(shù)的基本性質(zhì)教學設計15
一、教學目標
1.經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2.能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
3.經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。
二、教學重、難點
教學重點是:分數(shù)的基本性質(zhì)。
教學難點是:對分數(shù)的基本性質(zhì)的理解。
三、教學方法
采用了動手做一做、觀察、比較、歸納和直觀演示的方法
四、教學過程
。ㄒ唬⒐适乱,揭示課題
1.教師講故事。
猴山上的猴子們最喜歡吃猴王做的香蕉餅了。有一天,猴王做了三塊大小一樣的香蕉餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友們,你知道哪只猴子分得多嗎?
討論:三只猴子一起分到了三塊大小一樣的香蕉,它們都覺得自己分得的最多。經(jīng)過仔細觀察和比較,發(fā)現(xiàn)其實每只猴子分得的香蕉數(shù)量都是一樣的。
引導:聰明的猴王想出了一個聰明的辦法來滿足小猴子們的要求并且公平分配食物。他決定讓每只小猴子依次從一堆食物中取一份,直到食物被取完為止。這樣每只小猴子都有機會先后選擇食物,確保了公平分配。這個方法既滿足了小猴子們的要求,又讓他們學會了合理分享。
2.組織討論。
。1)三只猴子分得的餅同樣多,說明它們分得的餅的分數(shù)是相等的。也就是說,三只猴子分得的餅的分數(shù)是14、28和312,它們之間是相等的關系。雖然它們平均分的份數(shù)和表示的份數(shù)不同,但是它們的大小是相等的。
(2)猴王將三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小是否相等呢?你還能找出另一組相等的分法嗎?通過仔細觀察我們可以發(fā)現(xiàn):2/3=4/6=6/9。
。3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?請用分數(shù)表示,并簡化分數(shù)。
3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:
分數(shù)的分子和分母變化了,分數(shù)的大小不變。
它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
。ǘ、比較歸納,揭示規(guī)律
1.出示思考題。
比較每組分數(shù)的分子和分母:
(1)從左往右看,是按照什么規(guī)律變化的?
。2)從右往左看,又是按照什么規(guī)律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質(zhì)。
。1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到68。
板書:
。2)34是怎樣變化成912的呢?怎么填?學生回答后填空。
。3)引導口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。
(4)學生們對幾組分數(shù)進行了觀察,發(fā)現(xiàn)分子和分母的變化規(guī)律是同時乘以相同的數(shù)。經(jīng)過歸納總結(jié),他們得出結(jié)論:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。
(板書:都乘以
相同的數(shù))
。5)分數(shù)的分子和分母之間存在一個共同的因數(shù),當分子和分母同時除以這個因數(shù)時,得到的新分數(shù)與原分數(shù)大小相同。
。ò鍟憾汲裕
(6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質(zhì),讓學生說出少了什么?(少了“零除外”)討論:為什么性質(zhì)中要規(guī)定“零除外”?
。ò鍟毫愠猓
。7)齊讀分數(shù)的基本性質(zhì)。先讓學生找出性質(zhì)中關鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質(zhì)。
3.出示例2:把12和1024化成分母是12而大小不變的分數(shù)。
思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?
4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
5.質(zhì)疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
(三)、溝通說明,揭示聯(lián)系
通過舉例,分數(shù)的基本性質(zhì)與商不變性質(zhì)之間有密切的聯(lián)系。在分數(shù)中,分子和分母之間存在著除數(shù)與商的關系,分子除以分母就得到分數(shù)的值。當我們進行分數(shù)的'乘除運算時,商不變性質(zhì)起著重要作用。商不變性質(zhì)指的是在乘除運算中,如果被乘數(shù)或被除數(shù)同時乘(除)以(除以)一個相同的數(shù),那么乘積(商)不變。舉例來說,如果我們有一個分數(shù)$frac{a}$,其中$a$和$b$分別是整數(shù),那么當我們將分子和分母同時乘以相同的數(shù)$c$,得到的新分數(shù)為$frac{ac}{bc}$。根據(jù)商不變性質(zhì),這兩個分數(shù)是等價的,即它們代表同一個數(shù)值。這說明分數(shù)的基本性質(zhì)中的分子和分母可以同時乘以一個相同的數(shù),不改變分數(shù)的值。因此,分數(shù)的基本性質(zhì)與商不變性質(zhì)共同構(gòu)成了分數(shù)運算中的重要規(guī)律。在進行分數(shù)的乘除運算時,我們可以利用商不變性質(zhì)來簡化計算,保證結(jié)果的準確性。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
。ㄋ模⒍鄬泳毩,鞏固深化
1.口答。(學生口答后,要求說出是怎樣想的?)
2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質(zhì)中哪幾個字不相符。)
教學反思:
學生是學習的主體,教師是引導和組織學習的助手。在數(shù)學課堂上,教師的作用是激發(fā)學生的學習興趣,引導他們積極參與到數(shù)學學習中來。為了實現(xiàn)這一目標,教師需要深入了解學習方法,建立起一種以探究為核心的學習模式。教師應該激發(fā)學生的學習動力,為他們創(chuàng)造充分的學習機會,幫助他們通過自主觀察、討論、合作、探究來真正理解和掌握數(shù)學知識和技能,充分發(fā)揮學生的主動性和創(chuàng)造性。一個重要的特點是設計學習方法,從大膽猜想、實驗感知、觀察討論到總結(jié)歸納,都是為了促進學生自主探究和合作學習而設計的。
1、學生在故事情境中大膽猜想。
通過創(chuàng)設“猴王分餅”的故事,讓學生猜測一組三個分數(shù)的大小關系,為自主探索研究“分數(shù)的基本性質(zhì)”作必要的鋪墊,同時又很好地激發(fā)了學生的學習熱情。
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內(nèi)容,并對學生的猜想提出質(zhì)疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結(jié)論的正確性,突現(xiàn)出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調(diào)學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。
3、讓學生在分層練習中鞏固深化。
在練習的設計上,我們需要確保題目緊扣重點,設計新穎、多樣,難度層次遞進。首先,前兩題作為基礎練習,旨在幫助學生理解概念,全面了解他們對新知識的掌握情況。第三題則是在前兩題基礎上,鞏固練習,加深對所學知識的理解。最后一題通過游戲形式,旨在加深學生對分數(shù)基本性質(zhì)的認識,激發(fā)學生學習興趣,活躍課堂氣氛。這樣設計不僅能照顧到學生的思維發(fā)展過程,同時也能拓寬學生的思維空間,真正做到學以致用。
在教學過程中,我們應該注重引導學生進行多種方法的驗證,而不僅僅局限于老師提供的幾種方法。數(shù)學教學的目的不是僅僅教會學生問題的答案,更重要的是教會他們思考問題的方法和途徑。因此,當讓學生驗證結(jié)論的正確性時,應該給予他們更大的自由度,讓他們自己去尋找多種途徑進行驗證。這樣不僅可以激發(fā)學生的求知欲和探索欲,也有助于培養(yǎng)他們的創(chuàng)新能力和解決問題的能力。
【分數(shù)的基本性質(zhì)教學設計】相關文章:
《分數(shù)的基本性質(zhì)》教學設計優(yōu)秀05-09
分數(shù)的基本性質(zhì)教學設計錦集(15篇)08-11
比的基本性質(zhì)教學設計06-27
比例的基本性質(zhì)教學設計06-04
《比例的基本性質(zhì)》教學設計05-16