日韩精品福利免费观看高清,综合亚洲国产2020,99热只有精品这里,国产精品久久久久久久福利

    1. <address id="kobe1"></address>
      
      
      <td id="kobe1"><tbody id="kobe1"><listing id="kobe1"></listing></tbody></td>

        幾何證明選講_證明書

        發(fā)布時間:2017-07-24  編輯:admin 手機(jī)版

        幾何證明選講
        幾何證明選講
        高中數(shù)學(xué)選修4-1知識點(diǎn)總結(jié)
        平行線等分線段定理
        平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。
        推理1:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。
        推理2:經(jīng)過梯形一腰的中點(diǎn),且與底邊平行的直線平分另一腰。平分線分線段成比例定理
        平分線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例。
        推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例。相似三角形的判定及性質(zhì)
        相似三角形的判定:
        定義:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形。相似三角形對應(yīng)邊的比值叫做相似比(或相似系數(shù))。
        由于從定義出發(fā)判斷兩個三角形是否相似,需考慮6個元素,即三組對應(yīng)角是否分別相等,三組對應(yīng)邊是否分別成比例,顯然比較麻煩。所以我們曾經(jīng)給出過如下幾個判定兩個三角形相似的簡單方法:
        (1)兩角對應(yīng)相等,兩三角形相似;
        (2)兩邊對應(yīng)成比例且夾角相等,兩三角形相似;
        (3)三邊對應(yīng)成比例,兩三角形相似。
        預(yù)備定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與三角形相似。
        判定定理1:對于任意兩個三角形,如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。簡述為:兩角對應(yīng)相等,兩三角形相似。高中復(fù)習(xí)提綱網(wǎng) /
        判定定理2:對于任意兩個三角形,如果一個三角形的兩邊和另一個三角形的兩邊對應(yīng)成比例,并且夾角相等,那么這兩個三角形相似。簡述為:兩邊對應(yīng)成比例且夾角相等,兩三角形相似。
        判定定理3:對于任意兩個三角形,如果一個三角形的三條邊和另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似。簡述為:三邊對應(yīng)成比例,兩三角形相似。
        引理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。
        定理:(1)如果兩個直角三角形有一個銳角對應(yīng)相等,那么它們相似;
        (2)如果兩個直角三角形的兩條直角邊對應(yīng)成比例,那么它們相似。
        定理:如果一個直角三角形的斜邊和一條直角邊與另一個三角形的斜邊和直角邊對應(yīng)成比例,那么這兩個直角三角形相似。
        相似三角形的性質(zhì):
        (1)相似三角形對應(yīng)高的比、對應(yīng)中線的比和對應(yīng)平分線的比都等于相似比;
        (2)相似三角形周長的比等于相似比;
        (3)相似三角形面積的比等于相似比的平方。
        相似三角形外接圓的直徑比、周長比等于相似比,外接圓的面積比等于相似比的平方。直角三角形的射影定理
        射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng);兩直角邊分別是它們在斜邊上射影與斜邊的比例中項(xiàng)。
        圓周定理
        圓周角定理:圓上一條弧所對的圓周角等于它所對的圓周角的一半。
        圓心角定理:圓心角的度數(shù)等于它所對弧的度數(shù)。
        推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧相等。
        推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。圓內(nèi)接四邊形的性質(zhì)與判定定理
        定理1:圓的內(nèi)接四邊形的對角互補(bǔ)。
        定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對角。
        圓內(nèi)接四邊形判定定理:如果一個四邊形的對角互補(bǔ),那么這個四邊形的四個頂點(diǎn)共圓。
        推論:如果四邊形的一個外角等于它的內(nèi)角的對角,那么這個四邊形的四個頂點(diǎn)共圓。圓的切線的性質(zhì)及判定定理 高中復(fù)習(xí)提綱網(wǎng) /
        切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑。
        推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。
        推論2:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。
        切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。弦切角的性質(zhì)
        弦切角定理:弦切角等于它所夾的弧所對的圓周角。與圓有關(guān)的比例線段
        相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等。
        割線定理:從園外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等。
        切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)。
        切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

        精彩搶先看New  Top

        最熱文章榜Hot  Top

        • 1組織生活方面存在的問題及整改措施
        • 22016個人政治紀(jì)律和政治規(guī)矩方面存在的
        • 3個人組織生活方面存在的問題及整改措施
        • 4黨員干部落實(shí)全面從嚴(yán)治黨責(zé)任方面存在
        • 5當(dāng)前落實(shí)全面從嚴(yán)治黨責(zé)任方面存在的問
        • 6個人擔(dān)當(dāng)作為方面存在的問題及整改措施
        • 7關(guān)于在品德合格方面存在的問題及整改措
        • 82017年春節(jié)韻達(dá)快遞放假時間通知