日韩精品福利免费观看高清,综合亚洲国产2020,99热只有精品这里,国产精品久久久久久久福利

    1. <address id="kobe1"></address>
      
      
      <td id="kobe1"><tbody id="kobe1"><listing id="kobe1"></listing></tbody></td>

        我要投稿 投訴建議

        高二平面向量知識(shí)課件

        時(shí)間:2022-11-12 09:04:41 高二 我要投稿

        高二平面向量知識(shí)課件(通用10篇)

          學(xué)習(xí)數(shù)學(xué)不僅要有強(qiáng)烈的學(xué)習(xí)愿望和學(xué)習(xí)熱情,而且還要有科學(xué)的學(xué)習(xí)方法,只有掌握好了學(xué)習(xí)方法,數(shù)學(xué)學(xué)習(xí)起來(lái)就容易得多了。下面是小編為大家整理的高二平面向量知識(shí)課件,歡迎閱讀。

        高二平面向量知識(shí)課件(通用10篇)

          高二平面向量知識(shí)課件 篇1

          一:說(shuō)教材

          平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標(biāo)表示把向量之間的運(yùn)算轉(zhuǎn)化為數(shù)之間的運(yùn)算。本節(jié)內(nèi)容是在平面向量的坐標(biāo)表示以及平面向量的數(shù)量積及其運(yùn)算律的基礎(chǔ)上,介紹了平面向量數(shù)量積的坐標(biāo)表示,平面兩點(diǎn)間的距離公式,和向量垂直的坐標(biāo)表示的充要條件。為解決直線垂直問(wèn)題,三角形邊角的有關(guān)問(wèn)題提供了很好的辦法。本節(jié)內(nèi)容也是全章重要內(nèi)容之一。

          二:說(shuō)學(xué)習(xí)目標(biāo)和要求

          通過(guò)本節(jié)的學(xué)習(xí),要讓學(xué)生掌握

         。1):平面向量數(shù)量積的坐標(biāo)表示。

          (2):平面兩點(diǎn)間的距離公式。

          (3):向量垂直的坐標(biāo)表示的充要條件。

          以及它們的一些簡(jiǎn)單應(yīng)用,以上三點(diǎn)也是本節(jié)課的重點(diǎn),本節(jié)課的難點(diǎn)是向量垂直的坐標(biāo)表示的充要條件以及它的靈活應(yīng)用。

          三:說(shuō)教法

          在教學(xué)過(guò)程中,我主要采用了以下幾種教學(xué)方法:

         。1)啟發(fā)式教學(xué)法

          因?yàn)楸竟?jié)課重點(diǎn)的坐標(biāo)表示公式的推導(dǎo)相對(duì)比較容易,所以這節(jié)課我準(zhǔn)備讓學(xué)生自行推導(dǎo)出兩個(gè)向量數(shù)量積的坐標(biāo)表示公式,然后引導(dǎo)學(xué)生發(fā)現(xiàn)幾個(gè)重要的結(jié)論:如模的計(jì)算公式,平面兩點(diǎn)間的距離公式,向量垂直的坐標(biāo)表示的充要條件。

         。2)講解式教學(xué)法

          主要是講清概念,解除學(xué)生在概念理解上的疑惑感;例題講解時(shí),演示解題過(guò)程!

          主要輔助教學(xué)的手段(powerpoint)

          (3)討論式教學(xué)法

          主要是通過(guò)學(xué)生之間的相互交流來(lái)加深對(duì)較難問(wèn)題的理解,提高學(xué)生的自學(xué)能力和發(fā)現(xiàn)、分析、解決問(wèn)題以及創(chuàng)新能力。

          四:說(shuō)學(xué)法

          學(xué)生是課堂的主體,一切教學(xué)活動(dòng)都要圍繞學(xué)生展開(kāi),借以誘發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)課堂上和學(xué)生的交流,從而達(dá)到及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的目的。通過(guò)精講多練,充分調(diào)動(dòng)學(xué)生自主學(xué)習(xí)的積極性。如讓學(xué)生自己動(dòng)手推導(dǎo)兩個(gè)向量數(shù)量積的坐標(biāo)公式,引導(dǎo)學(xué)生推導(dǎo)4個(gè)重要的結(jié)論!并在具體的問(wèn)題中,讓學(xué)生建立方程的思想,更好的解決問(wèn)題!

          五:說(shuō)教學(xué)過(guò)程

          這節(jié)課我準(zhǔn)備這樣進(jìn)行:

          首先提出問(wèn)題:要算出兩個(gè)非零向量的數(shù)量積,我們需要知道哪些量?

          繼續(xù)提出問(wèn)題:假如知道兩個(gè)非零向量的坐標(biāo),是不是可以用這兩個(gè)向量的坐標(biāo)來(lái)表示這兩個(gè)向量的數(shù)量積呢?

          引導(dǎo)學(xué)生自己推導(dǎo)平面向量數(shù)量積的坐標(biāo)表示公式,在此公式基礎(chǔ)上還可以引導(dǎo)學(xué)生得到以下幾個(gè)重要結(jié)論:

          (1) 模的計(jì)算公式

         。2)平面兩點(diǎn)間的距離公式。

         。3)兩向量夾角的余弦的坐標(biāo)表示

         。4)兩個(gè)向量垂直的標(biāo)表示的充要條件

          第二部分是例題講解,通過(guò)例題講解,使學(xué)生更加熟悉公式并會(huì)加以應(yīng)用。

          例題1是書(shū)上122頁(yè)例1,此題是直接用平面向量數(shù)量積的坐標(biāo)公式的題,目的是讓學(xué)生熟悉這個(gè)公式,并在此題基礎(chǔ)上,求這兩個(gè)向量的夾角?目的是讓學(xué)生熟悉兩向量夾角的余弦的坐標(biāo)表示公式例題2是直接證明直線垂直的題,雖然比較簡(jiǎn)單,但體現(xiàn)了一種重要的證明方法,這種方法要讓學(xué)生掌握,其實(shí)這一例題也是兩個(gè)向量垂直坐標(biāo)表示的充要條件的一個(gè)應(yīng)用:即兩個(gè)向量的數(shù)量積是否為零是判斷相應(yīng)的兩條直線是否垂直的重要方法之一。

          例題3是在例2的基礎(chǔ)上稍微作了一下改變,目的是讓學(xué)生會(huì)應(yīng)用公式來(lái)解決問(wèn)題,并讓學(xué)生在這要有建立方程的思想。

          再配以練習(xí),讓學(xué)生能熟練的應(yīng)用公式,掌握今天所學(xué)內(nèi)容。

          然后是學(xué)習(xí)小結(jié)(由學(xué)生完成)

          最后作業(yè)布置!

          高二平面向量知識(shí)課件 篇2

          一、教學(xué)目標(biāo):

          1.知識(shí)與技能:

          了解平面向量基本定理及其意義, 理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來(lái)表示;能夠在具體問(wèn)題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來(lái)表示。

          2.過(guò)程與方法:

          讓學(xué)生經(jīng)歷平面向量基本定理的探索與發(fā)現(xiàn)的形成過(guò)程,體會(huì)由特殊到一般和數(shù)形結(jié)合的數(shù)學(xué)思想,初步掌握應(yīng)用平面向量基本定理分解向量的方法,培養(yǎng)學(xué)生分析問(wèn)題與解決問(wèn)題的能力。

          3.情感、態(tài)度和價(jià)值觀

          通過(guò)對(duì)平面向量基本定理的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)習(xí)積極性,增強(qiáng)學(xué)生向量的應(yīng)用意識(shí),并培養(yǎng)學(xué)生合作交流的意識(shí)及積極探索勇于發(fā)現(xiàn)的學(xué)習(xí)品質(zhì)。

          二、教學(xué)重點(diǎn):平面向量基本定理。

          三、教學(xué)難點(diǎn):平面向量基本定理的理解與應(yīng)用。

          四、教學(xué)方法:探究發(fā)現(xiàn)、講練結(jié)合

          五、授課類型:新授課

          六、教 具:電子白板、黑板和課件

          七、教學(xué)過(guò)程:

         。ㄒ唬┣榫骋n,板書(shū)課題

          由導(dǎo)彈的發(fā)射情境,引出物理中矢量的分解,進(jìn)而探究我們數(shù)學(xué)中的向量是不是也可以沿兩個(gè)不同方向的向量進(jìn)行分解呢?

         。ǘ⿵(fù)習(xí)鋪路,漸進(jìn)新課

          在共線向量定理的復(fù)習(xí)中,自然地、漸進(jìn)地融入到平面向量基本定理的師生互動(dòng)合作的探究與發(fā)現(xiàn)中去,感受著從特殊到一般、分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想碰撞的火花,體驗(yàn)著學(xué)習(xí)的快樂(lè)。

         。ㄈw納總結(jié),形成定理

          讓學(xué)生在發(fā)現(xiàn)學(xué)習(xí)的過(guò)程中歸納總結(jié)出平面向量基本定理,并給出基底的定義。

         。ㄋ模┓此级ɡ,解讀要點(diǎn)

          反思平面向量基本定理的實(shí)質(zhì)即向量分解,思考基底的不共線、不惟一和非零性及實(shí)數(shù)對(duì)

          的存在性和唯一性。

         。ㄎ澹└櫨毩(xí),反饋測(cè)試

          及時(shí)跟蹤練習(xí),反饋測(cè)試定理的理解程度。

         。┲v練結(jié)合,鞏固理解

          即講即練定理的應(yīng)用,講練結(jié)合,進(jìn)一步鞏固理解平面向量基本定理。

         。ㄆ撸⿰A角概念,順勢(shì)得出

          不共線向量的不同方向的位置關(guān)系怎么表示,夾角概念順勢(shì)得出。然后數(shù)形結(jié)合,講清本質(zhì):夾角共起點(diǎn)。再結(jié)合例題鞏固加深。

         。ò耍┱n堂小結(jié),畫(huà)龍點(diǎn)睛

          回顧本節(jié)的學(xué)習(xí)過(guò)程,小結(jié)學(xué)習(xí)要點(diǎn)及數(shù)學(xué)思想方法,老師的“教 ”與學(xué)生的“學(xué)”渾然一體,一氣呵成。

          (九)作業(yè)布置,回味思考。

          布置課后作業(yè),檢驗(yàn)教學(xué)效果;匚端伎,更加理解定理的實(shí)質(zhì)。

          高二平面向量知識(shí)課件 篇3

          一、單元教學(xué)內(nèi)容分析

          本章節(jié)內(nèi)容教學(xué)北師大版教材安排在三角函數(shù)章節(jié)之后,教本必修四的中間位置,為后面推導(dǎo)和差角公式做好鋪墊,為解三角形問(wèn)題和平面幾何中的許多計(jì)算問(wèn)題提供便利工具。

          向量既有代數(shù)特征,又有幾何特征,是溝通代數(shù)與幾何的橋梁。向量具有代數(shù)特征,運(yùn)算及其規(guī)律是代數(shù)學(xué)研究的基本問(wèn)題。向量可以進(jìn)行多種運(yùn)算,如向量加、減、數(shù)乘和叉乘等。向量運(yùn)算具有一系列豐富的運(yùn)算性質(zhì),與數(shù)運(yùn)算相比,向量運(yùn)算擴(kuò)充了運(yùn)算的對(duì)象和運(yùn)算的性質(zhì)。向量具有幾何特征,它不僅可以描述、刻畫(huà)幾何中的點(diǎn)、線、面及其位置關(guān)系,數(shù)量關(guān)系,還可以表示空間當(dāng)中的曲線與曲面,是研究幾何問(wèn)題的基本工具。本教材能從學(xué)生熟悉的實(shí)例出發(fā),經(jīng)過(guò)觀察、分析、歸納等方法概括出向量的相關(guān)概念,比以往教材更能使學(xué)生產(chǎn)生自然而親切的感覺(jué),有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使他們真正認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,從而提高學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。

          向量是刻畫(huà)現(xiàn)實(shí)世界的重要的數(shù)學(xué)模型。它為理解抽象代數(shù)、線性代數(shù)、泛函分析提供了基本數(shù)學(xué)模型。他與物理學(xué)科緊密相連。由于向量是近代數(shù)學(xué)中重要和基本的數(shù)學(xué)概念,是溝通代數(shù)、幾何與三角函數(shù)的一種重要工具,它有極其豐富的實(shí)際背景,有著廣泛的實(shí)際應(yīng)用,因此它具有很高的教育教學(xué)價(jià)值,它對(duì)更新和完善知識(shí)結(jié)構(gòu)具有重要的意義。

          教材結(jié)合向量的幾何背景——有向線段,引入向量的表示法,規(guī)定了向量的長(zhǎng)度的概念。定義了零向量、單位向量、平行向量和共線向量等概念。對(duì)于許多舊有的知識(shí)利用向量方法去處理,就會(huì)變得非常簡(jiǎn)捷,甚至變得十分明了,從而有助于學(xué)生對(duì)這些知識(shí)有更深刻的理解,更牢固的記憶,更自如的應(yīng)用,總之,有助于學(xué)生建立良好的數(shù)學(xué)認(rèn)知結(jié)構(gòu)。通過(guò)本部分內(nèi)容的學(xué)習(xí),可以促使學(xué)生認(rèn)識(shí)到向量與實(shí)際生活緊密相連,它在解決實(shí)際問(wèn)題當(dāng)中有著廣泛應(yīng)用。

          二、單元學(xué)生情況分析

          1、學(xué)生在初中階段接觸過(guò)物理學(xué)里面的矢量,已具備基本的認(rèn)知水平和運(yùn)算能力,具備在運(yùn)算中探索和發(fā)現(xiàn)數(shù)學(xué)結(jié)論的基本能力。

          2、學(xué)生已基本掌握函數(shù)和三角函數(shù)章節(jié)的基礎(chǔ)知識(shí),會(huì)運(yùn)用數(shù)形結(jié)合法,整體代換,分類討論法,類比思想解決實(shí)際問(wèn)題。

          3、學(xué)生已具備基本的分析和解決數(shù)學(xué)問(wèn)題的勇氣和智慧。

          三、教學(xué)目標(biāo)

          1.知識(shí)與技能目標(biāo)

         、爬斫獠⒄莆掌矫嫦蛄康幕靖拍。通過(guò)力與力的分析實(shí)例,了解向量的實(shí)際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。

         、仆ㄟ^(guò)實(shí)例,掌握向量的加、減、數(shù)乘向量和兩向量數(shù)量積運(yùn)算,并理解其幾何意義。

         、抢斫獠⒄莆障蛄抗簿和垂直問(wèn)題。理解平面向量基本定理及其意義。掌握平面向量的正交分解及其坐標(biāo)表示。會(huì)用坐標(biāo)表示向量的加、減、數(shù)乘向量及數(shù)量積運(yùn)算。

         、韧ㄟ^(guò)物理中“功”等實(shí)例,理解平面向量數(shù)量積的含義及其物理意義。體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系。掌握數(shù)量積的坐標(biāo)表示,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積來(lái)判斷向量的垂直問(wèn)題。

          2.過(guò)程與方法目標(biāo)

         、磐ㄟ^(guò)實(shí)例讓學(xué)生親身經(jīng)歷觀察、分析、歸納、抽象概括的思維過(guò)程。感受和認(rèn)知不同維度中的向量表示。

         、仆ㄟ^(guò)讓學(xué)生體會(huì)平面向量數(shù)量積的物理意義和幾何意義,體會(huì)數(shù)學(xué)與物理是密切聯(lián)系的。

         、墙(jīng)歷用向量方法解決某些簡(jiǎn)單的平面幾何及力學(xué)問(wèn)題與其他一些實(shí)際問(wèn)題的過(guò)程,體會(huì)向量是一種處理幾何問(wèn)題、物理問(wèn)題等的工具,使學(xué)生的運(yùn)算能力和解決實(shí)際問(wèn)題的能力得到提升。

          3.情感、態(tài)度與價(jià)值觀

          ⑴從學(xué)生熟悉的生活實(shí)例出發(fā)建立平面向量概念,激發(fā)學(xué)生的學(xué)習(xí)興趣。從物理知識(shí)引入到數(shù)學(xué)知識(shí)的形成過(guò)程,使學(xué)生體會(huì)到知識(shí)之間的相互聯(lián)系,建立全面、科學(xué)的價(jià)值觀。

         、仆ㄟ^(guò)對(duì)向量正交分解的學(xué)習(xí),使學(xué)生進(jìn)一步體會(huì)一般的問(wèn)題往往歸結(jié)為人們最熟悉的特殊問(wèn)題。

         、峭ㄟ^(guò)對(duì)本章節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生體會(huì)到數(shù)學(xué)和其他知識(shí)相聯(lián)系,體會(huì)數(shù)學(xué)作為解決問(wèn)題的工具的作用。

          重點(diǎn):

          1.平面向量的概念,運(yùn)算,共線問(wèn)題,平面向量的基本定理。

          2.平面向量的坐標(biāo)表示,向量數(shù)量積的概念和性質(zhì),向量的垂直問(wèn)題。

          3.體會(huì)向量在解決平面幾何問(wèn)題和物理問(wèn)題中的作用。

          難點(diǎn):

          1.對(duì)自由向量,向量加、減法數(shù)乘向量定義的理解和對(duì)平面向量基本定理理解。

          2.對(duì)平面向量運(yùn)算坐標(biāo)表示及向量數(shù)量積概念的理解,平面向量數(shù)量積的應(yīng)用。

          3.用向量表示幾何關(guān)系。

          四、單元教學(xué)活動(dòng)

          1.引入向量相關(guān)概念時(shí),除用教材中給出的實(shí)例外,鼓勵(lì)學(xué)生列舉實(shí)際生活中的其他實(shí)例。

          2.學(xué)習(xí)向量知識(shí)的同時(shí),盡量地聯(lián)系熟悉的物理現(xiàn)象或其他生活實(shí)例,用向量表述和刻畫(huà)。以便讓學(xué)生領(lǐng)悟到知識(shí)之間和學(xué)科之間的相互聯(lián)系。

          3.通過(guò)協(xié)作討論,根據(jù)生活中的實(shí)際案例,邊了解概念,邊畫(huà)圖;邊進(jìn)行計(jì)算,邊畫(huà)圖;進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合、形象思考、分析問(wèn)題的習(xí)慣。

          4.在學(xué)習(xí)本章知識(shí)的過(guò)程中,應(yīng)注意向量運(yùn)算的兩個(gè)方面:幾何意義與代數(shù)表示。由于新知識(shí)的學(xué)習(xí)過(guò)程中,它們相對(duì)孤立,學(xué)生對(duì)他們的認(rèn)識(shí)也就不容易形成體系。所以在教授新課時(shí)應(yīng)有意識(shí)地做一些滲透和鋪墊,在章節(jié)小結(jié)時(shí)應(yīng)強(qiáng)調(diào)它們的區(qū)別與聯(lián)系,以便學(xué)生更加全面、深刻的認(rèn)識(shí)向量。

          高二平面向量知識(shí)課件 篇4

          各位老師大家好,今天,我說(shuō)課的內(nèi)容是:人教B版必修4第二章第二節(jié)《平面向量的基本定理》第一課時(shí),我將從教材分析、學(xué)生分析、教學(xué)方法和手段、教學(xué)過(guò)程以及教學(xué)評(píng)價(jià)五個(gè)方面進(jìn)行分析

          一、說(shuō)教材

          1、關(guān)于教材內(nèi)容的分析

         。1)平面向量基本是共線向量基本定理的一個(gè)推廣,將來(lái)還可以推廣到空間向量,得到空間向量基本定理,這三個(gè)定理可以看成是在一定范圍內(nèi)向量分解的唯一性定理。所以它是進(jìn)一步研究向量問(wèn)題的基礎(chǔ);是解決向量或利用向量解決問(wèn)題的基本手段。

         。2)平面向量基本定理揭示了平面向量的基本關(guān)系和基本結(jié)構(gòu),是進(jìn)行向量運(yùn)算的基本工具,它也為平面向量坐標(biāo)表示的學(xué)習(xí)打下基礎(chǔ)。

         。3)平面向量基本定理蘊(yùn)涵了一種十分重要的數(shù)學(xué)思想——轉(zhuǎn)化思想,因此,有著十分廣闊的應(yīng)用空間。

          2、關(guān)于教學(xué)目標(biāo)的確定

          根據(jù)教學(xué)內(nèi)容的特點(diǎn),依據(jù)新課程標(biāo)準(zhǔn)的具體要求,我從以下三個(gè)方面來(lái)確定本節(jié)課的教學(xué)目標(biāo)。

          1、①了解平面向量基本定理及其意義,會(huì)做出由一組基地所表示的向量

         、跁(huì)把任意向量表示為一組基地的線性組合。掌握線段中點(diǎn)的向量表達(dá)式

          2、通過(guò)對(duì)平面向量基本定理的歸納,抽象、概況,體驗(yàn)定理的產(chǎn)生和形成過(guò)程,提高學(xué)生抽象的能力和概括的能力

          3、通過(guò)對(duì)定理的應(yīng)用增強(qiáng)向量的應(yīng)用意識(shí),進(jìn)一步體會(huì)向量是處理幾何問(wèn)題的強(qiáng)有力的工具。

          3、重點(diǎn)和難點(diǎn)的分析

          掌握了平面向量基本定理,可以使向量的運(yùn)算完全代數(shù)化,將數(shù)與形緊密地結(jié)合起來(lái),這樣許多幾何問(wèn)題就轉(zhuǎn)化為學(xué)生熟知的數(shù)量運(yùn)算,這也是中學(xué)數(shù)學(xué)課中學(xué)習(xí)向量的目的之一,所以我認(rèn)為對(duì)平面向量基本定理的應(yīng)用是本節(jié)課的重點(diǎn)。另外對(duì)向量基本定理的理解這一點(diǎn)對(duì)于初學(xué)者來(lái)說(shuō)有一定難度,所以是本節(jié)的難點(diǎn)。突破難點(diǎn)的關(guān)鍵是在充分理解向量的平行四邊形法則的和向量共線的充要條件下多方位多角度的設(shè)計(jì)有關(guān)訓(xùn)練題從而加深對(duì)定理的理解。

          二、說(shuō)教學(xué)方法與教學(xué)手段

          結(jié)合新課標(biāo)“以學(xué)生為本”的課堂教學(xué)原則和實(shí)際情況,確定新課教學(xué)模式為:質(zhì)疑—合作—探究式。

          此模式的流程為激發(fā)興趣——發(fā)現(xiàn)問(wèn)題,提出問(wèn)題——自主探究,解決問(wèn)題——自主練習(xí),采用多媒體輔助教學(xué),增強(qiáng)數(shù)學(xué)的直觀性,實(shí)物投影的使用激發(fā)學(xué)生的求知欲。

          三、說(shuō)學(xué)情分析與學(xué)法指導(dǎo)

          學(xué)情分析:前幾節(jié)課已經(jīng)學(xué)習(xí)了向量的基本概念和基本運(yùn)算,如共線向量、向量的加法、減法和數(shù)乘運(yùn)算及向量共線的充要條件等;另外學(xué)生對(duì)向量的物理背景有了初步的了解。如:力的合成與分解、位移、速度的合成與分解等,都為學(xué)習(xí)這節(jié)課作了充分準(zhǔn)備。

          學(xué)法指導(dǎo):教師平等的參與學(xué)生的自主探究活動(dòng),通過(guò)啟發(fā)、引導(dǎo)、激勵(lì)來(lái)體現(xiàn)教師的主導(dǎo)作用,根據(jù)學(xué)生的認(rèn)知情況和情感發(fā)展來(lái)調(diào)整整個(gè)學(xué)習(xí)活動(dòng)的梯度和層次,引導(dǎo)學(xué)生全員、

          高二平面向量知識(shí)課件 篇5

          第一教時(shí)

          教材:

          向量

          目的:

          要求學(xué)生掌握向量的意義、表示方法以及有關(guān)概念,并能作一個(gè)向量與已知向量相等,根據(jù)圖形判定向量是否平行、共線、相等。

          過(guò)程:

          一、開(kāi)場(chǎng)白:本P93(略)

          實(shí)例:老鼠由A向西北逃竄,貓?jiān)贐處向東追去,

          問(wèn):貓能否追到老鼠?(畫(huà)圖)

          結(jié)論:貓的速度再快也沒(méi)用,因?yàn)榉较蝈e(cuò)了。

          二、提出題:平面向量

          1.意義:既有大小又有方向的量叫向量。例:力、速度、加速度、沖量等

          注意:1數(shù)量與向量的區(qū)別:

          數(shù)量只有大小,是一個(gè)代數(shù)量,可以進(jìn)行代數(shù)運(yùn)算、比較大小;

          向量有方向,大小,雙重性,不能比較大小。

          2從19世紀(jì)末到20世紀(jì)初,向量就成為一套優(yōu)良通性的數(shù)學(xué)體系,用以研究空間性質(zhì)。

          2.向量的表示方法:

          1幾何表示法:點(diǎn)—射線

          有向線段——具有一定方向的線段

          有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度

          記作(注意起訖)

          2字母表示法: 可表示為 (印刷時(shí)用黑體字)

          P95 例 用1cm表示5n mail(海里)

          3.模的概念:向量 的大小——長(zhǎng)度稱為向量的模。

          記作: 模是可以比較大小的

          4.兩個(gè)特殊的向量:

          1零向量——長(zhǎng)度(模)為0的向量,記作 。 的方向是任意的。

          注意 與0的區(qū)別

          2單位向量——長(zhǎng)度(模)為1個(gè)單位長(zhǎng)度的向量叫做單位向量。

          例:溫度有零上零下之分,“溫度”是否向量?

          答:不是。因?yàn)榱闵狭阆乱仓皇谴笮≈帧?/p>

          例: 與 是否同一向量?

          答:不是同一向量。

          例:有幾個(gè)單位向量?單位向量的大小是否相等?單位向量是否都相等?

          答:有無(wú)數(shù)個(gè)單位向量,單位向量大小相等,單位向量不一定相等。

          三、向量間的關(guān)系:

          1.平行向量:方向相同或相反的非零向量叫做平行向量。

          記作: ∥ ∥

          規(guī)定: 與任一向量平行

          2.相等向量:長(zhǎng)度相等且方向相同的向量叫做相等向量。

          記作: =

          規(guī)定: =

          任兩相等的非零向量都可用一有向線段表示,與起點(diǎn)無(wú)關(guān)。

          3.共線向量:任一組平行向量都可移到同一條直線上 ,

          所以平行向量也叫共線向量。

          例:(P95)略

          變式一:與向量長(zhǎng)度相等的向量有多少個(gè)?(11個(gè))

          變式二:是否存在與向量長(zhǎng)度相等、方向相反的向量?(存在)

          變式三:與向量共線的向量有哪些?( )

          四、小結(jié):

          五、作業(yè):

          P96 練習(xí) 習(xí)題5.1

          高二平面向量知識(shí)課件 篇6

          今天我說(shuō)課的課題是《平面向量的概念》,這是江蘇省職業(yè)學(xué)校文化課教材《基礎(chǔ)模塊·下冊(cè)》第七章平面向量中的第一節(jié)的內(nèi)容,我將嘗試運(yùn)用新課改的理念、中職學(xué)生的認(rèn)知特點(diǎn)指導(dǎo)本節(jié)課的教學(xué),新課標(biāo)指出,學(xué)生是教學(xué)的主體,教師的教要本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動(dòng)為主線,在原有知識(shí)的基礎(chǔ)上,建構(gòu)新的知識(shí)體系。下面我將以此為基礎(chǔ)從教材分析、學(xué)情分析、教法學(xué)法、教學(xué)過(guò)程、教學(xué)評(píng)價(jià)等五個(gè)環(huán)節(jié),向各位專家談?wù)勎覍?duì)本節(jié)課教材的理解和教學(xué)設(shè)計(jì)。

          一、 教材分析:

          1、教材的地位和作用

          向量是高中階段學(xué)習(xí)的一個(gè)新的矢量,向量概念是《平面向量》的最基本內(nèi)容,它的學(xué)習(xí)直接影響到我們對(duì)向量的進(jìn)一步研究和學(xué)習(xí),如向量間關(guān)系、向量的加法、減法以及數(shù)乘等運(yùn)算,還有向量的坐標(biāo)運(yùn)算等,因此為后面的學(xué)習(xí)奠定了基礎(chǔ).

          結(jié)合本節(jié)課的特點(diǎn)及學(xué)生的實(shí)際情況我制定了如下的教學(xué)目標(biāo)及教學(xué)重難點(diǎn):

          2、教學(xué)目標(biāo)

          (1) 知識(shí)與技能目標(biāo)

          1)識(shí)記平面向量的定義,會(huì)用有向線段和字母表示向量,能辨別數(shù)量與向量;

          2)識(shí)記向量模的定義,會(huì)用字母和線段表示向量的模

          3)知道零向量、單位向量的概念

          (2) 過(guò)程與方法目標(biāo)

          學(xué)生通過(guò)對(duì)向量的學(xué)習(xí),能體會(huì)出向量來(lái)自于客觀現(xiàn)實(shí) ,提高觀察、分析、抽象和概括等方面的能力,感悟數(shù)形結(jié)合的思想.

          (3)情感態(tài)度與價(jià)值觀目標(biāo)

          通過(guò)構(gòu)建和諧的課堂教學(xué)氛圍,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生勇于提出問(wèn)題,同時(shí)培養(yǎng)學(xué)生團(tuán)隊(duì)合作的精神及積極向上的學(xué)習(xí)態(tài)度

          3、教學(xué)重難點(diǎn)

          教學(xué)重點(diǎn):向量的定義,向量的幾何表示和符號(hào)表示,以及零向量和單位向量

          教學(xué)難點(diǎn):向量的幾何表示的理解,對(duì)零向量和單位向量的理解

          二、學(xué)情分析

         。1)能力分析:對(duì)于我校的學(xué)生,基礎(chǔ)知識(shí)較薄弱,雖然他們的智力發(fā)展已到了形成運(yùn)演階段,但并不具備較強(qiáng)的抽象思維能力、概括能力及數(shù)形結(jié)合的思想.

         。2)認(rèn)知分析:之前,學(xué)生有了物理中的矢量概念,這為學(xué)習(xí)向量作了最好的鋪墊。

          (3)情感分析:部分學(xué)生具有積極的學(xué)習(xí)態(tài)度,強(qiáng)烈的探究欲望,能主動(dòng)參與研究

          三、教法學(xué)法

          教法:?jiǎn)l(fā)教學(xué)法,引探教學(xué)法,問(wèn)題驅(qū)動(dòng)法,并借助多媒體來(lái)輔助教學(xué)

          學(xué)法:在學(xué)法上,采用的是探究,發(fā)現(xiàn),歸納,練習(xí)。從問(wèn)題出發(fā),引導(dǎo)學(xué)生分析問(wèn)題,讓學(xué)生經(jīng)歷觀察分析、概括、歸納、類比等發(fā)現(xiàn)和探索過(guò)程

          四、教學(xué)過(guò)程

          課前:

          為了打造高效課堂,以生為本我選擇生本式的教學(xué)方式,以穿針引線的方式設(shè)計(jì)了前置性作業(yè)。其中包括一些向量的基本概念,并提出:

          1、你學(xué)過(guò)的其他學(xué)科中有沒(méi)有可以稱為向量的?

          2、向量的特點(diǎn)是什么?有幾種描述向量的表示方法?

          3、零向量的特點(diǎn)是什么?

          【設(shè)計(jì)意圖】目的是通過(guò)課前的預(yù)習(xí)明確自己需要在本節(jié)課中解決的問(wèn)題,帶著問(wèn)題聽(tīng)課,我會(huì)在上課前就學(xué)生的完成情況明確主要的教學(xué)側(cè)重點(diǎn),真正打造高效課堂。

          課上教學(xué)過(guò)程:

          1、 創(chuàng)設(shè)情境

          數(shù)學(xué)的學(xué)習(xí)應(yīng)該是與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們?cè)谏钪邪l(fā)現(xiàn)數(shù)學(xué),探究數(shù)學(xué),認(rèn)識(shí)并掌握數(shù)學(xué),由生活的實(shí)例引入,在對(duì)比于物理學(xué)中的速度、位移等學(xué)生已有的知識(shí)給出本章研究的問(wèn)題平面向量

          【設(shè)計(jì)意圖】形成對(duì)概念的初步認(rèn)識(shí),為進(jìn)一步抽象概括做準(zhǔn)備。

          2、 形成概念

          結(jié)合物理學(xué)中對(duì)矢量的定義,給出向量的描述性概念。對(duì)于一個(gè)新學(xué)的量定義概念后,通常要用符號(hào)表示它。怎樣把我們所舉例子中的向量表示出來(lái)呢?

          采取讓學(xué)生先嘗試向量的表示方法,自覺(jué)接受用帶有箭頭的線段(有向線段)來(lái)表示向量。明確為什么可以用有向線段表示向量,引導(dǎo)學(xué)生總結(jié)出向量的表示方法,強(qiáng)調(diào)印刷體與手寫(xiě)體的區(qū)別。結(jié)合板書(shū)的有向線段給出向量的模。

          單位向量、零向量的概念

          【即時(shí)訓(xùn)練】

          為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,通過(guò)學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來(lái)鞏固新知

          3、 知識(shí)應(yīng)用

          本階段的教學(xué),我采用的是教材上的兩個(gè)例題,旨在鞏固學(xué)生對(duì)平面向量的觀念,提高學(xué)生的動(dòng)手實(shí)踐能力,掌握求模的基本方法,提升識(shí)圖能力

          4、 學(xué)以致用

          為了調(diào)動(dòng)學(xué)生的積極性,培養(yǎng)學(xué)生團(tuán)隊(duì)合作的精神,本環(huán)節(jié)我采用小組競(jìng)爭(zhēng)的方式開(kāi)展教學(xué),小組討論并選派代表回答,各組之間取長(zhǎng)補(bǔ)短,將課堂教學(xué)推向高潮,再次加強(qiáng)學(xué)生對(duì)向量概念的理解。

          5、課堂小結(jié)

          為了了解學(xué)生本節(jié)課的學(xué)習(xí)效果,并且將所學(xué)做個(gè)很好的總結(jié)。設(shè)置問(wèn)題:通過(guò)本節(jié)課的學(xué)習(xí)你有哪些收獲?(可以從各種角度入手)

          【設(shè)計(jì)意圖】通過(guò)總結(jié)使學(xué)生明確本節(jié)的學(xué)習(xí)內(nèi)容,強(qiáng)化重點(diǎn),為今后的'學(xué)習(xí)打下堅(jiān)定的基礎(chǔ)

          6、 布置作業(yè)

          出選做題的目的是注意分層教學(xué)和因材施教,為學(xué)有余力的學(xué)生提供思考的空間.

          以上幾個(gè)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過(guò)動(dòng)眼觀察,動(dòng)腦思考,層層遞進(jìn),親身經(jīng)歷了知識(shí)的形成和發(fā)展過(guò)程,以問(wèn)題為驅(qū)動(dòng),使學(xué)生對(duì)知識(shí)的理解逐步深入。而最后的實(shí)際應(yīng)用又將激發(fā)學(xué)生的學(xué)習(xí)興趣,帶領(lǐng)學(xué)生進(jìn)入對(duì)本節(jié)課更深一步的思考和研究之中,從而達(dá)到知識(shí)在課堂以外的延伸。

          以上就是我對(duì)本節(jié)課的設(shè)計(jì)和說(shuō)明,請(qǐng)各位領(lǐng)導(dǎo),老師批評(píng)指正

          高二平面向量知識(shí)課件 篇7

          一、 背景分析

          1、學(xué)習(xí)任務(wù)分析

          平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個(gè)重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時(shí),其中第一課時(shí)主要研究數(shù)量積的概念,第二課時(shí)主要研究數(shù)量積的坐標(biāo)運(yùn)算,本節(jié)課是第一課時(shí)。

          本節(jié)課的主要學(xué)習(xí)任務(wù)是通過(guò)物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運(yùn)算律,使學(xué)生體會(huì)類比的思想方法,進(jìn)一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對(duì)物理背景的抽象,又是研究性質(zhì)和運(yùn)算律的基礎(chǔ)。同時(shí)也因?yàn)樵谶@個(gè)概念中,既有長(zhǎng)度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點(diǎn),不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點(diǎn)。

          2、學(xué)生情況分析

          學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實(shí)數(shù)的運(yùn)算體系,掌握了向量的概念及其線性運(yùn)算,具備了功等物理知識(shí),并且初步體會(huì)了研究向量運(yùn)算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再?gòu)母拍畛霭l(fā),在與實(shí)數(shù)運(yùn)算類比的基礎(chǔ)上研究性質(zhì)和運(yùn)算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對(duì)數(shù)量積概念的理解,一方面,相對(duì)于線性運(yùn)算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數(shù)的向量經(jīng)過(guò)數(shù)量積運(yùn)算后,形卻消失了,學(xué)生對(duì)這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數(shù)乘法運(yùn)算的影響,也會(huì)造成學(xué)生對(duì)數(shù)量積理解上的偏差,特別是對(duì)性質(zhì)和運(yùn)算律的理解。因而本節(jié)課教學(xué)的難點(diǎn)數(shù)量積的概念。

          二、 教學(xué)目標(biāo)設(shè)計(jì)

          《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》 對(duì)本節(jié)課的要求有以下三條:

         。1)通過(guò)物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。

         。2)體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系。

         。3)能用運(yùn)數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。

          從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無(wú)論是在概念的引入還是應(yīng)用過(guò)程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運(yùn)算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計(jì)算和判斷的理論依據(jù)。最后,無(wú)論是數(shù)量積的性質(zhì)還是運(yùn)算律,都希望學(xué)生在類比的基礎(chǔ)上,通過(guò)主動(dòng)探究來(lái)發(fā)現(xiàn),因而對(duì)培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類比思想都無(wú)疑是很好的載體。

          綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實(shí)際,我將本節(jié)課的教學(xué)目標(biāo)定為:

          1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;

          2、體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運(yùn)算律,

          并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的運(yùn)算和判斷;

          3、體會(huì)類比的數(shù)學(xué)思想和方法,進(jìn)一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。

          三、課堂結(jié)構(gòu)設(shè)計(jì)

          本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識(shí)的發(fā)生和發(fā)展過(guò)程的理念,結(jié)合本節(jié)課的知識(shí)的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué):

          即先從數(shù)學(xué)和物理兩個(gè)角度創(chuàng)設(shè)問(wèn)題情景,通過(guò)歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運(yùn)算律,使學(xué)生進(jìn)一步加深對(duì)概念的理解,然后通過(guò)例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過(guò)課堂小結(jié)提高學(xué)生認(rèn)識(shí),形成知識(shí)體系。

          四、 教學(xué)媒體設(shè)計(jì)

          和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來(lái)分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點(diǎn):

          1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來(lái)節(jié)約課時(shí),增加課堂容量。

          2、設(shè)計(jì)科學(xué)合理的板書(shū)(見(jiàn)下),一方面使學(xué)生加深對(duì)主要知識(shí)的印象,另一方面使學(xué)生清楚本節(jié)內(nèi)容知識(shí)間的邏輯關(guān)系,形成知識(shí)網(wǎng)絡(luò)。

          高二平面向量知識(shí)課件 篇8

          教學(xué)目標(biāo):

          1.了解向量的實(shí)際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會(huì)區(qū)分平行向量、相等向量和共線向量.

          2.通過(guò)對(duì)向量的學(xué)習(xí),使學(xué)生初步認(rèn)識(shí)現(xiàn)實(shí)生活中的向量和數(shù)量的本質(zhì)區(qū)別.

          3.通過(guò)學(xué)生對(duì)向量與數(shù)量的識(shí)別能力的訓(xùn)練,培養(yǎng)學(xué)生認(rèn)識(shí)客觀事物的數(shù)學(xué)本質(zhì)的能力.教學(xué)重點(diǎn):理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會(huì)表示向量.教學(xué)難點(diǎn):平行向量、相等向量和共線向量的區(qū)別和聯(lián)系.

          學(xué)法:本節(jié)是本章的入門(mén)課,概念較多,但難度不大.學(xué)生可根據(jù)在原有的位移、力等物理概念來(lái)學(xué)習(xí)向量的概念,結(jié)合圖形實(shí)物區(qū)分平行向量、相等向量、共線向量等概念.教具:多媒體或?qū)嵨锿队皟x,尺規(guī)

          授課類型:新授課

          教學(xué)思路:

          一、情景設(shè)置:

          如圖,老鼠由A向西北逃竄,貓?jiān)贐處向東追去,設(shè)問(wèn):貓能否

          追到老鼠?(畫(huà)圖)

          結(jié)論:貓的速度再快也沒(méi)用,因?yàn)榉较蝈e(cuò)了.

          分析:老鼠逃竄的路線AC、貓追逐的路線BD實(shí)際上都是有方向、C B D

          有長(zhǎng)短的量

          引言:請(qǐng)同學(xué)指出哪些量既有大小又有方向?哪些量只有大小沒(méi)有方向?

          二、新課學(xué)習(xí):

          (一)向量的概念:我們把既有大小又有方向的量叫向量

          (二)請(qǐng)同學(xué)閱讀課本后回答:(可制作成幻燈片)

          1、數(shù)量與向量有何區(qū)別?

          2、如何表示向量?

          3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?

          4、長(zhǎng)度為零的向量叫什么向量?長(zhǎng)度為1的向量叫什么向量?

          5、滿足什么條件的兩個(gè)向量是相等向量?單位向量是相等向量嗎?

          6、有一組向量,它們的方向相同或相反,這組向量有什么關(guān)系?

          7、如果把一組平行向量的起點(diǎn)全部移到一點(diǎn)O,這是它們是不是平行向量?這時(shí)各向量的終點(diǎn)之間有什么關(guān)系?

          (三)探究學(xué)習(xí)

          1、數(shù)量與向量的區(qū)別:

          數(shù)量只有大小,是一個(gè)代數(shù)量,可以進(jìn)行代數(shù)運(yùn)算、比較大小;

          向量有方向,大小,雙重性,不能比較大小.

          2.向量的表示方法:

          ①用有向線段表示;

         、谟米帜竌、b

          (黑體,印刷用)等表示; ③用有向線段的起點(diǎn)與終點(diǎn)字母:AB; ④向量AB的大小――長(zhǎng)度稱為向量的模,記作|AB|.

          3.有向線段:具有方向的線段就叫做有向線段,三個(gè)要素:起點(diǎn)、方向、長(zhǎng)度.

          向量與有向線段的區(qū)別:

          (1)向量只有大小和方向兩個(gè)要素,與起點(diǎn)無(wú)關(guān),只要大小和方向相同,則這兩個(gè)向量就是相同的向量;

          (2)有向線段有起點(diǎn)、大小和方向三個(gè)要素,起點(diǎn)不同,盡管大小和方向相同,也是不同的有向線段.

          4、零向量、單位向量概念:

         、匍L(zhǎng)度為0的向量叫零向量,記作0. 0的方向是任意的

          注意0與0的含義與書(shū)寫(xiě)區(qū)別.

          ②長(zhǎng)度為1個(gè)單位長(zhǎng)度的向量,叫單位向量. a A(起點(diǎn)) B (終點(diǎn))

          說(shuō)明:零向量、單位向量的定義都只是限制了大小.

          5、平行向量定義:

          ①方向相同或相反的非零向量叫平行向量;②我們規(guī)定0與任一向量平行.

          說(shuō)明:(1)綜合①、②才是平行向量的完整定義;(2)向量a、b、c平行,記作a∥b∥c.

          6、相等向量定義:

          長(zhǎng)度相等且方向相同的向量叫相等向量.

          說(shuō)明:(1)向量a與b相等,記作a=b;(2)零向量與零向量相等;

          (3)任意兩個(gè)相等的非零向量,都可用同一條有向線段來(lái)表示,并且與有..

          向線段的起點(diǎn)無(wú)關(guān)。

          7、共線向量與平行向量關(guān)系:

          平行向量就是共線向量,這是因?yàn)槿我唤M平行向量都可移到同一直線上(與有向線段的。起點(diǎn)無(wú)關(guān))。

          說(shuō)明:(1)平行向量可以在同一直線上,要區(qū)別于兩平行線的位置關(guān)系;

          (2)共線向量可以相互平行,要區(qū)別于在同一直線上的線段的位置關(guān)系.

          (四)理解和鞏固:

          例1書(shū)本86頁(yè)例1.

          例2判斷:

          (1)平行向量是否一定方向相同?(不一定)

          (2)不相等的向量是否一定不平行?(不一定)

          (3)與零向量相等的向量必定是什么向量?(零向量)

          (4)與任意向量都平行的向量是什么向量?(零向量)

          (5)若兩個(gè)向量在同一直線上,則這兩個(gè)向量一定是什么向量?(平行向量)

          (6)兩個(gè)非零向量相等的當(dāng)且僅當(dāng)什么?(長(zhǎng)度相等且方向相同)

          (7)共線向量一定在同一直線上嗎?(不一定)

          例3下列命題正確的是( )

          A.a與b共線,b與c共線,則a與c也共線

          B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形

          的四頂點(diǎn)

          C.向量a與b不共線,則a與b都是非零向量

          D.有相同起點(diǎn)的兩個(gè)非零向量不平行

          解:由于零向量與任一向量都共線,所以A不正確;由于數(shù)學(xué)中研究的向量是自由向量,所以兩個(gè)相等的非零向量可以在同一直線上,而此時(shí)就構(gòu)不成四邊形,根本不可能是一個(gè)平行四邊形的四個(gè)頂點(diǎn),所以B不正確;向量的平行只要方向相同或相反即可,與起點(diǎn)是否相同無(wú)關(guān),所以D不正確;對(duì)于C,其條件以否定形式給出,所以可從其逆否命題來(lái)入手考慮,假若a與b不都是非零向量,即a與b至少有一個(gè)是零向量,

          而由零向量與任一向量都

          共線,可有a與b共線,不符合已知條件,所以有a與b都是非零向量,所以應(yīng)選C.例4如圖,設(shè)O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量OA、OB、OC相等的向量.

          變式一:與向量長(zhǎng)度相等的向量有多少個(gè)?(11個(gè))

          變式二:是否存在與向量長(zhǎng)度相等、方向相反的向量?(存在)變式三:與向量共線的向量有哪些?(CB,DO,FE)

          課堂練習(xí):

          1.判斷下列命題是否正確,若不正確,請(qǐng)簡(jiǎn)述理由. ①向量AB與CD是共線向量,則A、B、C、D四點(diǎn)必在一直線上;

         、趩挝幌蛄慷枷嗟;

         、廴我幌蛄颗c它的相反向量不相等;

         、芩倪呅蜛BCD是平行四邊形當(dāng)且僅當(dāng)AB=DC

         、菀粋(gè)向量方向不確定當(dāng)且僅當(dāng)模為0;

         、薰簿的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.

          解:①不正確.共線向量即平行向量,只要求方向相同或相反即可,并不要求兩個(gè)向量AB、AC在同一直線上.

         、诓徽_.單位向量模均相等且為1,但方向并不確定.

         、鄄徽_.零向量的相反向量仍是零向量,但零向量與零向量是相等的④、⑤正確.⑥不正確.如圖AC與BC共線,雖起點(diǎn)不同,但其終點(diǎn)卻相

          2.書(shū)本88頁(yè)練習(xí)

          三、小結(jié):

          1、描述向量的兩個(gè)指標(biāo):模和方向.

          2、平行向量不是平面幾何中的平行線段的簡(jiǎn)單類比.

          3、向量的圖示,要標(biāo)上箭頭和始點(diǎn)、終點(diǎn).

          四、課后作業(yè):

          書(shū)本88頁(yè)習(xí)題2.1第3、5題

          高二平面向量知識(shí)課件 篇9

          一、教學(xué)目標(biāo):

          1.知識(shí)與技能:

          了解平面向量基本定理及其意義, 理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來(lái)表示;能夠在具體問(wèn)題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來(lái)表示。

          2.過(guò)程與方法:

          讓學(xué)生經(jīng)歷平面向量基本定理的探索與發(fā)現(xiàn)的形成過(guò)程,體會(huì)由特殊到一般和數(shù)形結(jié)合的數(shù)學(xué)思想,初步掌握應(yīng)用平面向量基本定理分解向量的方法,培養(yǎng)學(xué)生分析問(wèn)題與解決問(wèn)題的能力。

          3.情感、態(tài)度和價(jià)值觀

          通過(guò)對(duì)平面向量基本定理的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)習(xí)積極性,增強(qiáng)學(xué)生向量的應(yīng)用意識(shí),并培養(yǎng)學(xué)生合作交流的意識(shí)及積極探索勇于發(fā)現(xiàn)的學(xué)習(xí)品質(zhì).

          二、教學(xué)重點(diǎn):平面向量基本定理.

          三、教學(xué)難點(diǎn):平面向量基本定理的理解與應(yīng)用.

          四、教學(xué)方法:探究發(fā)現(xiàn)、講練結(jié)合

          五、授課類型:新授課

          六、教 具:電子白板、黑板和課件

          七、教學(xué)過(guò)程:

         。ㄒ唬┣榫骋n,板書(shū)課題

          由導(dǎo)彈的發(fā)射情境,引出物理中矢量的分解,進(jìn)而探究我們數(shù)學(xué)中的向量是不是也可以沿兩個(gè)不同方向的向量進(jìn)行分解呢?

         。ǘ⿵(fù)習(xí)鋪路,漸進(jìn)新課

          在共線向量定理的復(fù)習(xí)中,自然地、漸進(jìn)地融入到平面向量基本定理的師生互動(dòng)合作的探究與發(fā)現(xiàn)中去,感受著從特殊到一般、分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想碰撞的火花,體驗(yàn)著學(xué)習(xí)的快樂(lè)。

          (三)歸納總結(jié),形成定理

          讓學(xué)生在發(fā)現(xiàn)學(xué)習(xí)的過(guò)程中歸納總結(jié)出平面向量基本定理,并給出基底的定義。

          (四)反思定理,解讀要點(diǎn)

          反思平面向量基本定理的實(shí)質(zhì)即向量分解,思考基底的不共線、不惟一和非零性及實(shí)數(shù)對(duì)

          的存在性和唯一性。

          (五)跟蹤練習(xí),反饋測(cè)試

          及時(shí)跟蹤練習(xí),反饋測(cè)試定理的理解程度。

          (六)講練結(jié)合,鞏固理解

          即講即練定理的應(yīng)用,講練結(jié)合,進(jìn)一步鞏固理解平面向量基本定理。

          (七)夾角概念,順勢(shì)得出

          不共線向量的不同方向的位置關(guān)系怎么表示,夾角概念順勢(shì)得出。然后數(shù)形結(jié)合,講清本質(zhì):夾角共起點(diǎn)。再結(jié)合例題鞏固加深。

         。ò耍┱n堂小結(jié),畫(huà)龍點(diǎn)睛

          回顧本節(jié)的學(xué)習(xí)過(guò)程,小結(jié)學(xué)習(xí)要點(diǎn)及數(shù)學(xué)思想方法,老師的“教 ”與學(xué)生的“學(xué)”渾然一體,一氣呵成。

         。ň牛┳鳂I(yè)布置,回味思考。

          布置課后作業(yè),檢驗(yàn)教學(xué)效果。回味思考,更加理解定理的實(shí)質(zhì)。

          高二平面向量知識(shí)課件 篇10

          我說(shuō)課的內(nèi)容是平面向量的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級(jí)中學(xué)教科書(shū)(試驗(yàn)修訂本-必修)數(shù)學(xué)第一冊(cè)下,教學(xué)內(nèi)容為第96頁(yè)至98頁(yè)第五章第一節(jié)。本校是浙江省一級(jí)重點(diǎn)中學(xué),學(xué)生基礎(chǔ)相對(duì)較好。我在進(jìn)行教學(xué)設(shè)計(jì)時(shí),也充分考慮到了這一點(diǎn)。

          下面我從教材分析,教學(xué)目標(biāo)的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設(shè)計(jì)四個(gè)方面來(lái)匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想。

          一.教材分析

          (1)地位和作用

          向量是近代數(shù)學(xué)中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運(yùn)算(運(yùn)算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實(shí)際背景,在數(shù)學(xué)和物理學(xué)科中具有廣泛的應(yīng)用。

          平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進(jìn)一步對(duì)向量的深入學(xué)習(xí)。為學(xué)習(xí)向量的知識(shí)體系奠定了知識(shí)和方法基礎(chǔ)。

          (2)教學(xué)結(jié)構(gòu)的調(diào)整

          課本在這一部分內(nèi)容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長(zhǎng)度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認(rèn)知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調(diào)整:將本節(jié)教學(xué)中認(rèn)知過(guò)程的教學(xué)內(nèi)容適當(dāng)集中,以突出這節(jié)課的主題;例題,習(xí)題部分主要由學(xué)生依照概念自行分析,獨(dú)立完成。

          (3)重點(diǎn),難點(diǎn),關(guān)鍵

          由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ)。為了本章后面知識(shí)的學(xué)習(xí),首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點(diǎn)。本節(jié)課是為高一后半學(xué)期學(xué)生設(shè)計(jì)的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習(xí)方法和習(xí)慣,但根據(jù)以往的教學(xué)經(jīng)驗(yàn),多數(shù)學(xué)生對(duì)向量的認(rèn)識(shí)還比較單一,僅僅考慮其大小,忽略其方向,這對(duì)學(xué)生的理解能力要求比較高,所以我認(rèn)為向量概念也是這節(jié)課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學(xué)生進(jìn)行辨認(rèn),加深對(duì)向量的理解。

          二.教學(xué)目標(biāo)的確定

          根據(jù)本課教材的特點(diǎn),新大綱對(duì)本節(jié)課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標(biāo):

          (1)基礎(chǔ)知識(shí)目標(biāo):理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會(huì)用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì)根據(jù)圖形判定向量是否平行,共線,相等。

          (2)能力訓(xùn)練目標(biāo):培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學(xué)生觀察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。

          (3)情感目標(biāo):讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習(xí)的樂(lè)趣。

          三.教學(xué)方法的選擇

          Ⅰ教學(xué)方法

          本節(jié)課我采用了”啟發(fā)探究式的教學(xué)方法,根據(jù)本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):

          (1)由教材的特點(diǎn)確立類比思維為教學(xué)的主線。

          從教材內(nèi)容看平面向量無(wú)論從形式還是內(nèi)容都與物理學(xué)中的有向線段,矢量的概念類似。因此在教學(xué)中運(yùn)用類比作為思維的主線進(jìn)行教學(xué)。讓學(xué)生充分體會(huì)數(shù)學(xué)知識(shí)與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。

          (2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習(xí)方法

          通常學(xué)生對(duì)于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,另外,學(xué)生都有表現(xiàn)自己的欲望,希望得到老師和其他同學(xué)的認(rèn)可,要多表?yè)P(yáng),多肯定來(lái)激勵(lì)他們的學(xué)習(xí)熱情?紤]到我校學(xué)生的基礎(chǔ)較好,思維較為活躍,對(duì)自主探索式的學(xué)習(xí)方法也有一定的認(rèn)識(shí),所以在教學(xué)中我通過(guò)創(chuàng)設(shè)問(wèn)題情境,啟發(fā)引導(dǎo)學(xué)生運(yùn)用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨(dú)立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。

         、蚪虒W(xué)手段

          本節(jié)課中,除使用常規(guī)的教學(xué)手段外,我還使用了多媒體投影儀和計(jì)算機(jī)來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺(tái);計(jì)算機(jī)演示的作圖過(guò)程則有助于滲透數(shù)形結(jié)合思想,更易于對(duì)概念的理解和難點(diǎn)的突破。

          四.教學(xué)過(guò)程的設(shè)計(jì)

         、裰R(shí)引入階段---提出學(xué)習(xí)課題,明確學(xué)習(xí)目標(biāo)

          (1)創(chuàng)設(shè)情境——引入概念

          數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們?cè)谏钪腥グl(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識(shí)并掌握數(shù)學(xué)。

          由生活中具體的向量的實(shí)例引入:大海中船只的航線,中國(guó)象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

          (2)觀察歸納——形成概念

          由實(shí)例得出有向線段的概念,有向線段的三個(gè)要素:起點(diǎn),方向,長(zhǎng)度。明確知道了有向線段的起點(diǎn),方向和長(zhǎng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設(shè)計(jì),引導(dǎo)學(xué)生概括總結(jié)出本課新的知識(shí)點(diǎn):向量的概念及其幾何表示。

          (3)討論研究——深化概念

          在得到概念后進(jìn)行歸納,深化,之后向?qū)W生提出以下三個(gè)問(wèn)題:

         、傧蛄康囊厥鞘裁?

         、谙蛄恐g能否比較大小?

         、巯蛄颗c數(shù)量的區(qū)別是什么?

          同時(shí)指出這就是本節(jié)課我們要研究和學(xué)習(xí)的主題。

         、蛑R(shí)探索階段---探索平面向量的平行向量。相等向量等概念

          (1)總結(jié)反思——提高認(rèn)識(shí)

          方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長(zhǎng)度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

          (2)即時(shí)訓(xùn)練—鞏固新知

          為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,通過(guò)學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來(lái)鞏固新知識(shí)。

         。劬毩(xí)1]判斷下列命題是否正確,若不正確,請(qǐng)簡(jiǎn)述理由.

        【高二平面向量知識(shí)課件】相關(guān)文章:

        《平面向量》說(shuō)課稿03-25

        高二乙醇課件03-17

        高二數(shù)學(xué)下冊(cè)課件08-10

        高二雷雨教學(xué)課件02-26

        高二原子晶體課件03-15

        海平面之下高二散文11-17

        海平面之下高二散文04-23

        高二勵(lì)志班會(huì)課件02-28

        高二開(kāi)學(xué)班會(huì)課件02-28